Files
openpilot/selfdrive/controls/lib/lateral_planner.py

348 lines
13 KiB
Python
Raw Normal View History

2026-01-11 18:23:29 +08:00
import time
import numpy as np
from openpilot.common.realtime import DT_MDL
from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED, get_speed_error
# from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
import cereal.messaging as messaging
from cereal import log
from openpilot.common.params import Params
#from openpilot.selfdrive.controls.lib.lane_planner import LanePlanner
from openpilot.selfdrive.controls.lib.lane_planner_2 import LanePlanner
from collections import deque
TRAJECTORY_SIZE = 33
#CAMERA_OFFSET = 0.04
PATH_COST = 1.0
LATERAL_MOTION_COST = 0.11
LATERAL_ACCEL_COST = 0.0
LATERAL_JERK_COST = 0.04
# Extreme steering rate is unpleasant, even
# when it does not cause bad jerk.
# TODO this cost should be lowered when low
# speed lateral control is stable on all cars
STEERING_RATE_COST = 700.0
class LateralPlanner:
def __init__(self, CP, debug=False):
#self.DH = DesireHelper()
# Vehicle model parameters used to calculate lateral movement of car
self.factor1 = CP.wheelbase - CP.centerToFront
self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase * CP.tireStiffnessRear)
self.last_cloudlog_t = 0
self.solution_invalid_cnt = 0
self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.velocity_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.v_plan = np.zeros((TRAJECTORY_SIZE,))
self.x_sol = np.zeros((TRAJECTORY_SIZE, 4), dtype=np.float32)
self.v_ego = MIN_SPEED
self.l_lane_change_prob = 0.0
self.r_lane_change_prob = 0.0
self.debug_mode = debug
self.params = Params()
self.latDebugText = ""
# lane_mode
self.LP = LanePlanner()
self.readParams = 0
self.lanelines_active = False
self.lanelines_active_tmp = False
self.useLaneLineSpeedApply = self.params.get_int("UseLaneLineSpeed")
self.pathOffset = float(self.params.get_int("PathOffset")) * 0.01
self.useLaneLineMode = False
self.plan_a = np.zeros((TRAJECTORY_SIZE, ))
self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
self.plan_yaw_rate = np.zeros((TRAJECTORY_SIZE,))
self.t_idxs = np.arange(TRAJECTORY_SIZE)
self.y_pts = np.zeros((TRAJECTORY_SIZE,))
self.d_path_w_lines_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.lat_mpc = LateralMpc()
self.reset_mpc(np.zeros(4))
self.curve_speed = 0
self.lanemode_possible_count = 0
self.laneless_only = True
def reset_mpc(self, x0=None):
if x0 is None:
x0 = np.zeros(4)
self.x0 = x0
self.lat_mpc.reset(x0=self.x0)
def update(self, sm, carrot):
global LATERAL_ACCEL_COST, LATERAL_JERK_COST, STEERING_RATE_COST
self.readParams -= 1
if self.readParams <= 0:
self.readParams = 100
self.useLaneLineSpeedApply = sm['carState'].useLaneLineSpeed
self.pathOffset = float(self.params.get_int("PathOffset")) * 0.01
self.lateralPathCost = self.params.get_float("LatMpcPathCost") * 0.01
self.lateralMotionCost = self.params.get_float("LatMpcMotionCost") * 0.01
LATERAL_ACCEL_COST = self.params.get_float("LatMpcAccelCost") * 0.01
LATERAL_JERK_COST = self.params.get_float("LatMpcJerkCost") * 0.01
STEERING_RATE_COST = self.params.get_float("LatMpcSteeringRateCost")
# clip speed , lateral planning is not possible at 0 speed
measured_curvature = sm['controlsState'].curvature
v_ego_car = max(sm['carState'].vEgo, MIN_SPEED)
speed_kph = v_ego_car * 3.6
self.v_ego = v_ego_car
self.curve_speed = sm['carrotMan'].vTurnSpeed
# Parse model predictions
md = sm['modelV2']
model_active = False
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
model_active = True
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
self.t_idxs = np.array(md.position.t)
self.plan_yaw = np.array(md.orientation.z)
self.plan_yaw_rate = np.array(md.orientationRate.z)
self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z])
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car)
self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf)
self.v_ego = self.v_plan[0]
self.plan_a = np.array(md.acceleration.x)
if md.velocity.x[-1] < md.velocity.x[0] * 0.7: # TODO: 모델이 감속을 요청하는 경우 속도테이블이 레인모드를 할수 없음. 속도테이블을 새로 만들어야함..
self.lanemode_possible_count = 0
self.laneless_only = True
else:
self.lanemode_possible_count += 1
if self.lanemode_possible_count > int(1/DT_MDL):
self.laneless_only = False
# Parse model predictions
self.LP.parse_model(md)
#lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
#self.DH.update(sm['carState'], md, sm['carControl'].latActive, lane_change_prob, sm)
if self.useLaneLineSpeedApply == 0 or self.laneless_only:
self.useLaneLineMode = False
elif speed_kph >= self.useLaneLineSpeedApply + 2:
self.useLaneLineMode = True
elif speed_kph < self.useLaneLineSpeedApply - 2:
self.useLaneLineMode = False
# Turn off lanes during lane change
#if self.DH.desire == log.Desire.laneChangeRight or self.DH.desire == log.Desire.laneChangeLeft:
if md.meta.desire != log.Desire.none or carrot.atc_active:
self.LP.lane_change_multiplier = 0.0 #md.meta.laneChangeProb
else:
self.LP.lane_change_multiplier = 1.0
# lanelines calculation?
self.LP.lanefull_mode = self.useLaneLineMode
self.LP.lane_width_left = md.meta.laneWidthLeft
self.LP.lane_width_right = md.meta.laneWidthRight
self.LP.curvature = measured_curvature
self.path_xyz, self.lanelines_active = self.LP.get_d_path(sm['carState'], v_ego_car, self.t_idxs, self.path_xyz, self.curve_speed)
if self.lanelines_active:
self.plan_yaw, self.plan_yaw_rate = yaw_from_path_no_scipy(
self.path_xyz, self.v_plan,
smooth_window=5,
clip_rate=2.0,
align_first_yaw=None #md.orientation.z[0] # 초기 정렬
)
self.latDebugText = self.LP.debugText
#self.lanelines_active = True if self.LP.d_prob > 0.3 and self.LP.lanefull_mode else False
self.path_xyz[:, 1] += self.pathOffset
self.lat_mpc.set_weights(self.lateralPathCost, self.lateralMotionCost,
LATERAL_ACCEL_COST, LATERAL_JERK_COST,
STEERING_RATE_COST)
y_pts = self.path_xyz[:LAT_MPC_N+1, 1]
heading_pts = self.plan_yaw[:LAT_MPC_N+1]
yaw_rate_pts = self.plan_yaw_rate[:LAT_MPC_N+1]
self.y_pts = y_pts
assert len(y_pts) == LAT_MPC_N + 1
assert len(heading_pts) == LAT_MPC_N + 1
assert len(yaw_rate_pts) == LAT_MPC_N + 1
lateral_factor = np.clip(self.factor1 - (self.factor2 * self.v_plan**2), 0.0, np.inf)
p = np.column_stack([self.v_plan, lateral_factor])
self.lat_mpc.run(self.x0,
p,
y_pts,
heading_pts,
yaw_rate_pts)
# init state for next iteration
# mpc.u_sol is the desired second derivative of psi given x0 curv state.
# with x0[3] = measured_yaw_rate, this would be the actual desired yaw rate.
# instead, interpolate x_sol so that x0[3] is the desired yaw rate for lat_control.
self.x0[3] = np.interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3])
# Check for infeasible MPC solution
mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any()
t = time.monotonic()
if mpc_nans or self.lat_mpc.solution_status != 0:
self.reset_mpc()
self.x0[3] = measured_curvature * self.v_ego
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning("Lateral mpc - nan: True")
if self.lat_mpc.cost > 1e6 or mpc_nans:
self.solution_invalid_cnt += 1
else:
self.solution_invalid_cnt = 0
self.x_sol = self.lat_mpc.x_sol
def publish(self, sm, pm, carrot):
plan_solution_valid = self.solution_invalid_cnt < 2
plan_send = messaging.new_message('lateralPlan')
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
if not plan_send.valid:
#print("lateralPlan_valid=", sm.valid)
#print("lateralPlan_alive=", sm.alive)
#print("lateralPlan_freq_ok=", sm.freq_ok)
#print(sm.avg_freq)
pass
lateralPlan = plan_send.lateralPlan
lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
lateralPlan.dPathPoints = self.y_pts.tolist()
lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
lateralPlan.distances = self.lat_mpc.x_sol[0:CONTROL_N, 0].tolist()
v_div = np.maximum(self.v_plan[:CONTROL_N], 6.0)
if len(self.v_plan) == TRAJECTORY_SIZE:
lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3] / v_div).tolist()
else:
lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3] / self.v_ego).tolist()
v_div2 = max(self.v_ego, 6.0)
lateralPlan.curvatureRates = [float(x.item() / v_div2) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
lateralPlan.solverExecutionTime = self.lat_mpc.solve_time
if self.debug_mode:
lateralPlan.solverCost = self.lat_mpc.cost
lateralPlan.solverState = log.LateralPlan.SolverState.new_message()
lateralPlan.solverState.x = self.lat_mpc.x_sol.tolist()
lateralPlan.solverState.u = self.lat_mpc.u_sol.flatten().tolist()
#lateralPlan.desire = self.DH.desire
lateralPlan.useLaneLines = self.lanelines_active
#lateralPlan.laneChangeState = self.DH.lane_change_state
#lateralPlan.laneChangeDirection = self.DH.lane_change_direction
lateralPlan.laneWidth = float(self.LP.lane_width)
#plan_send.lateralPlan.dPathWLinesX = [float(x) for x in self.d_path_w_lines_xyz[:, 0]]
#plan_send.lateralPlan.dPathWLinesY = [float(y) for y in self.d_path_w_lines_xyz[:, 1]]
#lateralPlan.laneWidthLeft = float(self.DH.lane_width_left)
#lateralPlan.laneWidthRight = float(self.DH.lane_width_right)
lateralPlan.position.x = self.x_sol[:, 0].tolist()
lateralPlan.position.y = self.x_sol[:, 1].tolist()
lateralPlan.position.z = self.path_xyz[:, 2].tolist()
#lateralPlan.distances = self.lat_mpc.x_sol[0:CONTROL_N, 0].tolist()
self.x_sol = self.lat_mpc.x_sol
debugText = (
f"{'lanemode' if self.lanelines_active else 'laneless'} | " +
f"{self.LP.lane_width_left:.1f}m | " +
f"{self.LP.lane_width:.1f}m | " +
f"{self.LP.lane_width_right:.1f}m | " +
f"{f'offset={self.LP.offset_total * 100.0:.1f}cm turn={np.clip(self.curve_speed, -200, 200):.0f}km/h' if self.lanelines_active else ''}"
)
lateralPlan.latDebugText = debugText
#lateralPlan.latDebugText = self.latDebugText
#lateralPlan.laneWidthLeft = float(self.DH.lane_width_left)
#lateralPlan.laneWidthRight = float(self.DH.lane_width_right)
#lateralPlan.distanceToRoadEdgeLeft = float(self.DH.distance_to_road_edge_left)
#lateralPlan.distanceToRoadEdgeRight = float(self.DH.distance_to_road_edge_right)
pm.send('lateralPlan', plan_send)
def smooth_moving_avg(arr, window=5):
if window < 2:
return arr
if window % 2 == 0:
window += 1
pad = window // 2
arr_pad = np.pad(arr, (pad, pad), mode='edge')
kernel = np.ones(window) / window
return np.convolve(arr_pad, kernel, mode='same')[pad:-pad]
def yaw_from_path_no_scipy(path_xyz, v_plan, smooth_window=5,
clip_rate=2.0, align_first_yaw=None):
v0 = float(np.asarray(v_plan)[0]) if len(v_plan) else 0.0
# 저속(≤6 m/s)에서는 창을 크게
if v0 <= 6.0:
smooth_window = max(smooth_window, 9) # 9~11 권장
N = path_xyz.shape[0]
x = path_xyz[:, 0].astype(float)
y = path_xyz[:, 1].astype(float)
if N < 5:
return np.zeros(N, np.float32), np.zeros(N, np.float32)
# 1) s(호길이) 계산
dx = np.diff(x)
dy = np.diff(y)
ds_seg = np.sqrt(dx*dx + dy*dy)
ds_seg[ds_seg < 0.05] = 0.05
s = np.zeros(N, float)
s[1:] = np.cumsum(ds_seg)
if s[-1] < 0.5: # 총 호길이 < 0.5m면 미분 결과 의미가 약함
return np.zeros(N, np.float32), np.zeros(N, np.float32)
# 2) smoothing (이동평균)
x_smooth = smooth_moving_avg(x, smooth_window)
y_smooth = smooth_moving_avg(y, smooth_window)
# 3) 1·2차 도함수(s축 미분)
dx_ds = np.gradient(x_smooth, s)
dy_ds = np.gradient(y_smooth, s)
d2x_ds2 = np.gradient(dx_ds, s)
d2y_ds2 = np.gradient(dy_ds, s)
# 4) yaw = atan2(dy/ds, dx/ds)
yaw = np.unwrap(np.arctan2(dy_ds, dx_ds))
# 5) 곡률 kappa = ...
denom = (dx_ds*dx_ds + dy_ds*dy_ds)**1.5
denom[denom < 1e-9] = 1e-9
kappa = (dx_ds * d2y_ds2 - dy_ds * d2x_ds2) / denom
# 6) yaw_rate = kappa * v
v = np.asarray(v_plan, float)
yaw_rate = kappa * v
if v0 <= 6.0:
# 이동평균으로 미세 요동 감쇄(창 5~7)
yaw_rate = smooth_moving_avg(yaw_rate, window=7)
# 7) 초기 yaw 정렬 (선택)
if align_first_yaw is not None:
bias = yaw[0] - float(align_first_yaw)
yaw = yaw - bias
# 8) 안정화
yaw = np.where(np.isfinite(yaw), yaw, 0.0)
yaw_rate = np.where(np.isfinite(yaw_rate), yaw_rate, 0.0)
yaw_rate = np.clip(yaw_rate, -abs(clip_rate), abs(clip_rate))
return yaw.astype(np.float32), yaw_rate.astype(np.float32)