Release 260111

This commit is contained in:
Comma Device
2026-01-11 18:23:29 +08:00
commit 3721ecbf8a
2601 changed files with 855070 additions and 0 deletions

View File

View File

@@ -0,0 +1,662 @@
from cereal import log
from openpilot.common.conversions import Conversions as CV
from openpilot.common.realtime import DT_MDL
import numpy as np
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.common.params import Params
from collections import deque
LaneChangeState = log.LaneChangeState
LaneChangeDirection = log.LaneChangeDirection
TurnDirection = log.Desire
LANE_CHANGE_SPEED_MIN = 30 * CV.KPH_TO_MS
LANE_CHANGE_TIME_MAX = 10.
BLINKER_NONE = 0
BLINKER_LEFT = 1
BLINKER_RIGHT = 2
BLINKER_BOTH = 3
DESIRES = {
LaneChangeDirection.none: {
LaneChangeState.off: log.Desire.none,
LaneChangeState.preLaneChange: log.Desire.none,
LaneChangeState.laneChangeStarting: log.Desire.none,
LaneChangeState.laneChangeFinishing: log.Desire.none,
},
LaneChangeDirection.left: {
LaneChangeState.off: log.Desire.none,
LaneChangeState.preLaneChange: log.Desire.none,
LaneChangeState.laneChangeStarting: log.Desire.laneChangeLeft,
LaneChangeState.laneChangeFinishing: log.Desire.laneChangeLeft,
},
LaneChangeDirection.right: {
LaneChangeState.off: log.Desire.none,
LaneChangeState.preLaneChange: log.Desire.none,
LaneChangeState.laneChangeStarting: log.Desire.laneChangeRight,
LaneChangeState.laneChangeFinishing: log.Desire.laneChangeRight,
},
}
TURN_DESIRES = {
TurnDirection.none: log.Desire.none,
TurnDirection.turnLeft: log.Desire.turnLeft,
TurnDirection.turnRight: log.Desire.turnRight,
}
def calculate_lane_width_frog(lane, current_lane, road_edge):
lane_x, lane_y = np.array(lane.x), np.array(lane.y)
edge_x, edge_y = np.array(road_edge.x), np.array(road_edge.y)
current_x, current_y = np.array(current_lane.x), np.array(current_lane.y)
lane_y_interp = np.interp(current_x, lane_x[lane_x.argsort()], lane_y[lane_x.argsort()])
road_edge_y_interp = np.interp(current_x, edge_x[edge_x.argsort()], edge_y[edge_x.argsort()])
distance_to_lane = np.mean(np.abs(current_y - lane_y_interp))
distance_to_road_edge = np.mean(np.abs(current_y - road_edge_y_interp))
return min(distance_to_lane, distance_to_road_edge), distance_to_road_edge
def calculate_lane_width(lane, lane_prob, current_lane, road_edge):
# t ≈ 1초 앞 기준으로 차선/도로 가장자리까지의 거리 계산
t = 1.0
current_lane_y = np.interp(t, ModelConstants.T_IDXS, current_lane.y)
lane_y = np.interp(t, ModelConstants.T_IDXS, lane.y)
distance_to_lane = abs(current_lane_y - lane_y)
road_edge_y = np.interp(t, ModelConstants.T_IDXS, road_edge.y)
distance_to_road_edge = abs(current_lane_y - road_edge_y)
distance_to_road_edge_far = abs(current_lane_y - np.interp(2.0, ModelConstants.T_IDXS, road_edge.y))
lane_valid = lane_prob > 0.5
return min(distance_to_lane, distance_to_road_edge), distance_to_road_edge, distance_to_road_edge_far, lane_valid
class ExistCounter:
"""
존재 여부가 노이즈처럼 튀는 신호를 히스테리시스로 안정화해 주는 카운터.
- true가 일정 시간 이상 지속되면 counter를 양수로 증가
- false가 일정 시간 이상 지속되면 counter를 음수로 감소
"""
def __init__(self):
self.counter = 0
self.true_count = 0
self.false_count = 0
self.threshold = int(0.2 / DT_MDL) # 약 0.2초 이상 지속 시 유효로 판단
def update(self, exist_flag: bool):
if exist_flag:
self.true_count += 1
self.false_count = 0
if self.true_count >= self.threshold:
self.counter = max(self.counter + 1, 1)
else:
self.false_count += 1
self.true_count = 0
if self.false_count >= self.threshold:
self.counter = min(self.counter - 1, -1)
return self.true_count
class DesireHelper:
def __init__(self):
self.params = Params()
self.frame = 0
# Lane change / turn 상태
self.lane_change_state = LaneChangeState.off
self.lane_change_direction = LaneChangeDirection.none
self.lane_change_timer = 0.0
self.lane_change_ll_prob = 1.0
self.lane_change_delay = 0.0
self.maneuver_type = "none" # "none" / "turn" / "lane_change"
# Desire / turn 관련
self.desire = log.Desire.none
self.turn_direction = TurnDirection.none
self.enable_turn_desires = True
self.turn_desire_state = False
self.desire_disable_count = 0 # turn 후 일정 시간 동안 차선변경 금지
self.turn_disable_count = 0 # steeringAngle 매우 클 때 turn 금지
# Lane / road edge 상태
self.lane_width_left = 0.0
self.lane_width_right = 0.0
self.lane_width_left_diff = 0.0
self.lane_width_right_diff = 0.0
self.distance_to_road_edge_left = 0.0
self.distance_to_road_edge_right = 0.0
self.distance_to_road_edge_left_far = 0.0
self.distance_to_road_edge_right_far = 0.0
self.lane_exist_left_count = ExistCounter()
self.lane_exist_right_count = ExistCounter()
self.lane_width_left_count = ExistCounter()
self.lane_width_right_count = ExistCounter()
self.road_edge_left_count = ExistCounter()
self.road_edge_right_count = ExistCounter()
self.available_left_lane = False
self.available_right_lane = False
self.available_left_edge = False
self.available_right_edge = False
self.lane_width_left_queue = deque(maxlen=int(1.0 / DT_MDL))
self.lane_width_right_queue = deque(maxlen=int(1.0 / DT_MDL))
self.lane_available_last = False
self.edge_available_last = False
self.lane_available_trigger = False
self.lane_appeared = False
self.lane_line_info = 0
# Blinkers / ATC
self.blinker_ignore = False
self.driver_blinker_state = BLINKER_NONE
self.carrot_blinker_state = BLINKER_NONE
self.carrot_lane_change_count = 0
self.carrot_cmd_index_last = 0
self.atc_type = ""
self.atc_active = 0 # 0: 없음, 1: ATC 동작 중, 2: 운전자와 ATC 상충
# Auto lane change 관련
self.auto_lane_change_enable = False
self.next_lane_change = False
self.blindspot_detected_counter = 0
# Keep pulse
self.keep_pulse_timer = 0.0
# 파라미터
self.laneChangeNeedTorque = 0
self.laneChangeBsd = 0
self.laneChangeDelay = 0.0
self.modelTurnSpeedFactor = 0.0
self.model_turn_speed = 0.0
# 기타
self.prev_desire_enabled = False
self.desireLog = ""
self.object_detected_count = 0
# ★ 현재 차선 확률 (Ego 기준 좌/우)
self.cur_left_prob = 1.0 # laneLineProbs[1]
self.cur_right_prob = 1.0 # laneLineProbs[2]
self.current_lane_missing = False
# ─────────────────────────────────────────────
# Config / Model 관련
# ─────────────────────────────────────────────
def _update_params_periodic(self):
if self.frame % 100 == 0:
self.laneChangeNeedTorque = self.params.get_int("LaneChangeNeedTorque")
self.laneChangeBsd = self.params.get_int("LaneChangeBsd")
self.laneChangeDelay = self.params.get_float("LaneChangeDelay") * 0.1
self.modelTurnSpeedFactor = self.params.get_float("ModelTurnSpeedFactor") * 0.1
def _make_model_turn_speed(self, modeldata):
if self.modelTurnSpeedFactor > 0:
model_turn_speed = np.interp(self.modelTurnSpeedFactor,
modeldata.velocity.t,
modeldata.velocity.x) * CV.MS_TO_KPH * 1.2
self.model_turn_speed = self.model_turn_speed * 0.9 + model_turn_speed * 0.1
else:
self.model_turn_speed = 200.0
# ─────────────────────────────────────────────
# Lane / Edge 상태 계산
# ─────────────────────────────────────────────
def _check_lane_state(self, modeldata):
# 왼쪽: laneLines[0] vs 현재차선 laneLines[1], roadEdges[0]
lane_width_left, self.distance_to_road_edge_left, self.distance_to_road_edge_left_far, lane_prob_left = \
calculate_lane_width(modeldata.laneLines[0], modeldata.laneLineProbs[0],
modeldata.laneLines[1], modeldata.roadEdges[0])
# 오른쪽: laneLines[3] vs 현재차선 laneLines[2], roadEdges[1]
lane_width_right, self.distance_to_road_edge_right, self.distance_to_road_edge_right_far, lane_prob_right = \
calculate_lane_width(modeldata.laneLines[3], modeldata.laneLineProbs[3],
modeldata.laneLines[2], modeldata.roadEdges[1])
# 차선 존재 카운터 업데이트
self.lane_exist_left_count.update(lane_prob_left)
self.lane_exist_right_count.update(lane_prob_right)
# 1초 이동 평균 (노이즈 줄이기)
self.lane_width_left_queue.append(lane_width_left)
self.lane_width_right_queue.append(lane_width_right)
self.lane_width_left = float(np.mean(self.lane_width_left_queue))
self.lane_width_right = float(np.mean(self.lane_width_right_queue))
self.lane_width_left_diff = self.lane_width_left_queue[-1] - self.lane_width_left_queue[0]
self.lane_width_right_diff = self.lane_width_right_queue[-1] - self.lane_width_right_queue[0]
# 유효 차선/엣지 판단
min_lane_width = 2.5
self.lane_width_left_count.update(self.lane_width_left > min_lane_width)
self.lane_width_right_count.update(self.lane_width_right > min_lane_width)
self.road_edge_left_count.update(self.distance_to_road_edge_left > min_lane_width)
self.road_edge_right_count.update(self.distance_to_road_edge_right > min_lane_width)
available_count = int(0.2 / DT_MDL)
self.available_left_lane = self.lane_width_left_count.counter > available_count
self.available_right_lane = self.lane_width_right_count.counter > available_count
self.available_left_edge = self.road_edge_left_count.counter > available_count and self.distance_to_road_edge_left_far > min_lane_width
self.available_right_edge = self.road_edge_right_count.counter > available_count and self.distance_to_road_edge_right_far > min_lane_width
self.cur_left_prob = modeldata.laneLineProbs[1]
self.cur_right_prob = modeldata.laneLineProbs[2]
# ─────────────────────────────────────────────
# 모델 내 desire 상태 (turn 예측 등)
# ─────────────────────────────────────────────
def _check_desire_state(self, modeldata, carstate, maneuver_type):
desire_state = modeldata.meta.desireState
# turnLeft + turnRight 확률
self.turn_desire_state = (desire_state[1] + desire_state[2]) > 0.1
#if self.turn_desire_state:
# self.desire_disable_count = int(2.0 / DT_MDL)
#else:
# self.desire_disable_count = max(0, self.desire_disable_count - 1)
# steeringAngle 너무 크면 turn 자체를 일정 시간 막기
if abs(carstate.steeringAngleDeg) > 80:
self.turn_disable_count = int(10.0 / DT_MDL)
else:
self.turn_disable_count = max(0, self.turn_disable_count - 1)
# ─────────────────────────────────────────────
# Blinkers / ATC 상태 업데이트
# ─────────────────────────────────────────────
def _update_driver_blinker(self, carstate):
driver_blinker_state = carstate.leftBlinker * 1 + carstate.rightBlinker * 2
driver_blinker_changed = driver_blinker_state != self.driver_blinker_state
self.driver_blinker_state = driver_blinker_state
driver_desire_enabled = driver_blinker_state in [BLINKER_LEFT, BLINKER_RIGHT]
if self.laneChangeNeedTorque < 0:
# 운전자 깜빡이를 무시하고 차선변경 안 하는 설정
driver_desire_enabled = False
return driver_blinker_state, driver_blinker_changed, driver_desire_enabled
def _update_atc_blinker(self, carrotMan, v_ego, driver_blinker_state):
"""
ATC에서 온 turn/lanechange 명령 기반 깜빡이 상태 갱신.
"""
atc_type = carrotMan.atcType
atc_blinker_state = BLINKER_NONE
# ATC 기반 자동 차선변경 유지 시간
if self.carrot_lane_change_count > 0:
atc_blinker_state = self.carrot_blinker_state
elif carrotMan.carrotCmdIndex != self.carrot_cmd_index_last and carrotMan.carrotCmd == "LANECHANGE":
self.carrot_cmd_index_last = carrotMan.carrotCmdIndex
self.carrot_lane_change_count = int(0.2 / DT_MDL)
self.carrot_blinker_state = BLINKER_LEFT if carrotMan.carrotArg == "LEFT" else BLINKER_RIGHT
atc_blinker_state = self.carrot_blinker_state
elif atc_type in ["turn left", "turn right"]:
# 네비 turn 안내: 속도 조건을 턴 쪽으로 강제
if self.atc_active != 2:
atc_blinker_state = BLINKER_LEFT if atc_type == "turn left" else BLINKER_RIGHT
self.atc_active = 1
self.blinker_ignore = False
elif atc_type in ["fork left", "fork right", "atc left", "atc right"]:
# 분기(lanechange에 가까움)
if self.atc_active != 2:
atc_blinker_state = BLINKER_LEFT if atc_type in ["fork left", "atc left"] else BLINKER_RIGHT
self.atc_active = 1
else:
self.atc_active = 0
# 운전자 깜빡이와 ATC 깜빡이가 충돌할 경우 ATC 무효화
if driver_blinker_state != BLINKER_NONE and atc_blinker_state != BLINKER_NONE and driver_blinker_state != atc_blinker_state:
atc_blinker_state = BLINKER_NONE
self.atc_active = 2
atc_desire_enabled = atc_blinker_state in [BLINKER_LEFT, BLINKER_RIGHT]
# blinker_ignore일 때는 깜빡이 신호를 잠시 무시
if driver_blinker_state == BLINKER_NONE:
self.blinker_ignore = False
if self.blinker_ignore:
driver_blinker_state = BLINKER_NONE
atc_blinker_state = BLINKER_NONE
atc_desire_enabled = False
# ATC 타입이 바뀌었으면 이번 프레임은 무시 (안정화 목적)
if self.atc_type != atc_type:
atc_desire_enabled = False
self.atc_type = atc_type
return atc_blinker_state, atc_desire_enabled
# ─────────────────────────────────────────────
# Turn / LaneChange 모드 분류
# ─────────────────────────────────────────────
def _classify_maneuver_type(self, blinker_state, carstate, old_type):
"""
깜빡이가 들어왔을 때 이번 조작이 turn인지 lane_change인지 분류.
- 너무 복잡하게 가지 않고, 현재 속도/감속/차선상태/모델 turn 상태 기준으로 점수화.
"""
if blinker_state == BLINKER_NONE:
return "none"
v_kph = carstate.vEgo * CV.MS_TO_KPH
accel = carstate.aEgo
# 깜빡이 방향에 따라 참조할 lane/edge 선택
if blinker_state == BLINKER_LEFT:
lane_exist_counter = self.lane_exist_left_count.counter
lane_available = self.available_left_lane
edge_available = self.available_left_edge
lane_prob_side = self.cur_left_prob
edge_dist = self.distance_to_road_edge_left_far
else:
lane_exist_counter = self.lane_exist_right_count.counter
lane_available = self.available_right_lane
edge_available = self.available_right_edge
lane_prob_side = self.cur_right_prob
edge_dist = self.distance_to_road_edge_right_far
score_turn = 0
if v_kph < 30.0:
score_turn += 1
elif v_kph < 40.0 and accel < -1.0:
score_turn += 1
# 차로가 없고, 로드에지도 여유없고..
if v_kph < 40.0 and not lane_available and not edge_available:
score_turn += 1
# 차선이 잘 안 보이거나(교차로/삼거리 등)
if v_kph < 40.0 and lane_exist_counter < int(0.5 / DT_MDL):
score_turn += 1
# steeringAngle이 크면 턴에 가깝다고 본다
#if abs(carstate.steeringAngleDeg) > 45.0:
# score_turn += 1
# 모델이 이미 turn을 예측 중이면 가중치
if self.turn_desire_state:
score_turn += 1
# ATC가 turn 안내 중이면 가중치
if self.atc_type in ["turn left", "turn right"]:
score_turn += 2
elif self.atc_type in ["fork left", "fork right", "atc left", "atc right"]:
score_turn -= 2 # fork/atc는 lanechange 쪽에 더 가깝게
# ★ road edge가 충분히 멀면(교차로/넓은 공간으로 판단) 턴 쪽으로 가산점
edge_far = edge_dist > 4.0 # 튜닝 포인트 (4~6m 정도가 무난)
#if edge_far:
# score_turn += 1
current_lane_missing = lane_prob_side < 0.3
self.current_lane_missing = current_lane_missing
# 튜닝 포인트: score_turn 임계값
if score_turn >= 2:
#if current_lane_missing and edge_far:
if edge_far:
return "turn"
else:
return old_type
else:
return "lane_change"
# ─────────────────────────────────────────────
# 메인 업데이트 루틴
# ─────────────────────────────────────────────
def update(self, carstate, modeldata, lateral_active, lane_change_prob, carrotMan, radarState):
self.frame += 1
self._update_params_periodic()
self._make_model_turn_speed(modeldata)
# 카운터 감소
self.carrot_lane_change_count = max(0, self.carrot_lane_change_count - 1)
self.lane_change_delay = max(0.0, self.lane_change_delay - DT_MDL)
self.blindspot_detected_counter = max(0, self.blindspot_detected_counter - 1)
v_ego = carstate.vEgo
below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN
# Lane / desire 상태 갱신
self._check_lane_state(modeldata)
self._check_desire_state(modeldata, carstate, self.maneuver_type)
# 운전자 깜빡이
driver_blinker_state, driver_blinker_changed, driver_desire_enabled = self._update_driver_blinker(carstate)
# BSD 설정
ignore_bsd = (self.laneChangeBsd < 0)
block_lanechange_bsd = (self.laneChangeBsd == 1)
# ATC 깜빡이
atc_blinker_state, atc_desire_enabled = self._update_atc_blinker(carrotMan, v_ego, driver_blinker_state)
# 최종 깜빡이/Desire enabled 판단
desire_enabled = driver_desire_enabled or atc_desire_enabled
blinker_state = driver_blinker_state if driver_desire_enabled else atc_blinker_state
# lane_line_info (HUD용 등)
lane_line_info = carstate.leftLaneLine if blinker_state == BLINKER_LEFT else carstate.rightLaneLine
# BSD / 주변 차량 감지
if desire_enabled:
lane_exist_counter = self.lane_exist_left_count.counter if blinker_state == BLINKER_LEFT else self.lane_exist_right_count.counter
lane_available = self.available_left_lane if blinker_state == BLINKER_LEFT else self.available_right_lane
edge_available = self.available_left_edge if blinker_state == BLINKER_LEFT else self.available_right_edge
self.lane_appeared = self.lane_appeared or lane_exist_counter == int(0.2 / DT_MDL)
radar = radarState.leadLeft if blinker_state == BLINKER_LEFT else radarState.leadRight
side_object_dist = radar.dRel + radar.vLead * 4.0 if radar.status else 255
object_detected = side_object_dist < v_ego * 3.0
if object_detected:
self.object_detected_count = max(1, self.object_detected_count + 1)
else:
self.object_detected_count = min(-1, self.object_detected_count - 1)
lane_line_info_edge_detect = (lane_line_info % 10 in [0, 5] and self.lane_line_info not in [0, 5])
self.lane_line_info = lane_line_info % 10
else:
lane_exist_counter = 0
lane_available = True
edge_available = True
self.lane_appeared = False
self.lane_available_trigger = False
self.object_detected_count = 0
lane_line_info_edge_detect = False
self.lane_line_info = lane_line_info % 10
# 차선/엣지 기반 lane change 가능 여부
lane_change_available = (lane_available or edge_available) and lane_line_info < 20 # 20 미만이면 흰색 라인
# lane_available 변화 & 폭 변화로 lane_available_trigger 계산
self.lane_available_trigger = False
if blinker_state == BLINKER_LEFT:
lane_width_diff = self.lane_width_left_diff
distance_to_road_edge = self.distance_to_road_edge_left
lane_width_side = self.lane_width_left
else:
lane_width_diff = self.lane_width_right_diff
distance_to_road_edge = self.distance_to_road_edge_right
lane_width_side = self.lane_width_right
if lane_width_diff > 0.8 and (lane_width_side < distance_to_road_edge):
self.lane_available_trigger = True
edge_availabled = (not self.edge_available_last and edge_available)
side_object_detected = self.object_detected_count > -0.3 / DT_MDL
self.lane_appeared = self.lane_appeared and distance_to_road_edge < 4.0
# Auto lane change 트리거
if self.carrot_lane_change_count > 0:
auto_lane_change_blocked = False
auto_lane_change_trigger = lane_change_available
else:
auto_lane_change_blocked = ((atc_blinker_state == BLINKER_LEFT) and (driver_blinker_state != BLINKER_LEFT))
self.auto_lane_change_enable = self.auto_lane_change_enable and not auto_lane_change_blocked
auto_lane_change_trigger = self.auto_lane_change_enable and edge_available and (self.lane_available_trigger or self.lane_appeared) and not side_object_detected
self.desireLog = f"L:{self.auto_lane_change_enable},{auto_lane_change_blocked},E:{lane_available},{edge_available},A:{self.lane_available_trigger},{self.lane_appeared},{lane_width_diff:.1f},{lane_width_side:.1f},{distance_to_road_edge:.1f}={auto_lane_change_trigger}"
# 메인 상태머신
# 0) lateral 끊기거나 너무 오래 지속되면 리셋
if not lateral_active or self.lane_change_timer > LANE_CHANGE_TIME_MAX:
self.lane_change_state = LaneChangeState.off
self.lane_change_direction = LaneChangeDirection.none
self.turn_direction = TurnDirection.none
self.maneuver_type = "none"
# 1) turn 후 일정시간 동안은 아무 것도 하지 않음
elif self.desire_disable_count > 0:
self.lane_change_state = LaneChangeState.off
self.lane_change_direction = LaneChangeDirection.none
self.turn_direction = TurnDirection.none
self.maneuver_type = "none"
else:
# 깜빡이 켜져 있을 때, 이번 조작이 turn인지 lane_change인지 먼저 분류
if desire_enabled:
new_type = self._classify_maneuver_type(blinker_state, carstate, self.maneuver_type)
else:
new_type = "none"
# ★ 1) 원래 lane_change였는데 새로 보니 turn 조건 + 차선 없음이면 → 강제 전환 허용
if self.maneuver_type == "lane_change" and new_type == "turn" and self.lane_change_state not in [LaneChangeState.preLaneChange, LaneChangeState.laneChangeStarting]:
# 차선변경 도중에도 조건 만족 시 턴으로 스위칭
self.maneuver_type = "turn"
self.lane_change_state = LaneChangeState.off # FSM 리셋 후 turn 루트로
# ★ 2) 그 외에는 off/pre 상태에서만 모드 변경
elif self.lane_change_state in (LaneChangeState.off, LaneChangeState.preLaneChange):
self.maneuver_type = new_type
# ─ TURN 모드 처리 ─
if desire_enabled and self.maneuver_type == "turn" and self.enable_turn_desires: # and not carstate.standstill:
self.lane_change_state = LaneChangeState.off
if self.turn_disable_count > 0:
self.turn_direction = TurnDirection.none
self.lane_change_direction = LaneChangeDirection.none
else:
self.turn_direction = TurnDirection.turnLeft if blinker_state == BLINKER_LEFT else TurnDirection.turnRight
# 호환성을 위해 lane_change_direction도 turn과 동일하게 세팅
self.lane_change_direction = self.turn_direction
# ─ Lane Change FSM 처리 ─
else:
self.turn_direction = TurnDirection.none
# LaneChangeState.off
if self.lane_change_state == LaneChangeState.off:
if desire_enabled and not self.prev_desire_enabled and not below_lane_change_speed:
self.lane_change_state = LaneChangeState.preLaneChange
self.lane_change_ll_prob = 1.0
self.lane_change_delay = self.laneChangeDelay
# 맨 끝 차선이 아니면, ATC 자동 차선변경 비활성
lane_exist_counter_side = self.lane_exist_left_count.counter if blinker_state == BLINKER_LEFT else self.lane_exist_right_count.counter
self.auto_lane_change_enable = False if lane_exist_counter_side > 0 or lane_change_available else True
self.next_lane_change = False
# LaneChangeState.preLaneChange
elif self.lane_change_state == LaneChangeState.preLaneChange:
self.lane_change_direction = LaneChangeDirection.left if blinker_state == BLINKER_LEFT else LaneChangeDirection.right
dir_map = {
LaneChangeDirection.left: (carstate.steeringTorque > 0, carstate.leftBlindspot),
LaneChangeDirection.right: (carstate.steeringTorque < 0, carstate.rightBlindspot),
}
torque_cond, blindspot_cond = dir_map.get(self.lane_change_direction, (False, False))
torque_applied = carstate.steeringPressed and torque_cond
blindspot_detected = blindspot_cond
# 차선이 일정시간 이상 안보이면 자동차선변경 허용
lane_exist_counter_side = self.lane_exist_left_count.counter if blinker_state == BLINKER_LEFT else self.lane_exist_right_count.counter
if not lane_available or lane_exist_counter_side < int(2.0 / DT_MDL):
self.auto_lane_change_enable = True
# BSD
if blindspot_detected and not ignore_bsd:
self.blindspot_detected_counter = int(1.5 / DT_MDL)
if not desire_enabled or below_lane_change_speed:
self.lane_change_state = LaneChangeState.off
self.lane_change_direction = LaneChangeDirection.none
else:
# 차선변경 시작 조건
if (lane_change_available and self.lane_change_delay == 0) or lane_line_info_edge_detect:
if self.blindspot_detected_counter > 0 and not ignore_bsd:
if torque_applied and not block_lanechange_bsd:
self.lane_change_state = LaneChangeState.laneChangeStarting
elif self.laneChangeNeedTorque > 0 or self.next_lane_change:
if torque_applied:
self.lane_change_state = LaneChangeState.laneChangeStarting
elif driver_desire_enabled:
self.lane_change_state = LaneChangeState.laneChangeStarting
elif torque_applied or auto_lane_change_trigger or lane_line_info_edge_detect:
self.lane_change_state = LaneChangeState.laneChangeStarting
# LaneChangeState.laneChangeStarting
elif self.lane_change_state == LaneChangeState.laneChangeStarting:
# 원래 차선라인을 0.5초 동안 서서히 fade-out
self.lane_change_ll_prob = max(self.lane_change_ll_prob - 2 * DT_MDL, 0.0)
if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01:
self.lane_change_state = LaneChangeState.laneChangeFinishing
# LaneChangeState.laneChangeFinishing
elif self.lane_change_state == LaneChangeState.laneChangeFinishing:
# 1초 동안 서서히 lane line 복귀
self.lane_change_ll_prob = min(self.lane_change_ll_prob + DT_MDL, 1.0)
if self.lane_change_ll_prob > 0.99:
self.lane_change_direction = LaneChangeDirection.none
if desire_enabled:
self.lane_change_state = LaneChangeState.preLaneChange
self.next_lane_change = True
else:
self.lane_change_state = LaneChangeState.off
# lane_change_timer 관리
if self.lane_change_state in (LaneChangeState.off, LaneChangeState.preLaneChange):
self.lane_change_timer = 0.0
else:
self.lane_change_timer += DT_MDL
self.lane_available_last = lane_available
self.edge_available_last = edge_available
self.prev_desire_enabled = desire_enabled
# 운전자가 반대 방향으로 강하게 조향하면 해당 차선변경/턴 취소
steering_pressed_cancel = carstate.steeringPressed and \
((carstate.steeringTorque < 0 and blinker_state == BLINKER_LEFT) or
(carstate.steeringTorque > 0 and blinker_state == BLINKER_RIGHT))
if steering_pressed_cancel and self.lane_change_state != LaneChangeState.off:
self.lane_change_direction = LaneChangeDirection.none
self.lane_change_state = LaneChangeState.off
self.blinker_ignore = True
# 최종 desire 결정
if self.turn_direction != TurnDirection.none:
self.desire = TURN_DESIRES[self.turn_direction]
self.lane_change_direction = self.turn_direction
else:
self.desire = DESIRES[self.lane_change_direction][self.lane_change_state]
# keep pulse (LaneChangeState.preLaneChange에서 유지)
if self.lane_change_state in (LaneChangeState.off, LaneChangeState.laneChangeStarting):
self.keep_pulse_timer = 0.0
elif self.lane_change_state == LaneChangeState.preLaneChange:
self.keep_pulse_timer += DT_MDL
if self.keep_pulse_timer > 1.0:
self.keep_pulse_timer = 0.0
elif self.desire in (log.Desire.keepLeft, log.Desire.keepRight):
self.desire = log.Desire.none

View File

@@ -0,0 +1,138 @@
import numpy as np
from cereal import log
from opendbc.car.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
from openpilot.common.realtime import DT_CTRL, DT_MDL
from openpilot.selfdrive.modeld.constants import ModelConstants
import numpy as np
MIN_SPEED = 1.0
CONTROL_N = 17
CAR_ROTATION_RADIUS = 0.0
# This is a turn radius smaller than most cars can achieve
MAX_CURVATURE = 0.2
MAX_VEL_ERR = 5.0 # m/s
# EU guidelines
MAX_LATERAL_JERK = 5.0 # m/s^3
MAX_LATERAL_ACCEL_NO_ROLL = 3.0 # m/s^2
MAX_CURVATURE_DELTA_FRAME = 0.03 #0.019 # about 3 degree / DT_CTRL
def apply_deadzone(error, deadzone):
if error > deadzone:
error -= deadzone
elif error < - deadzone:
error += deadzone
else:
error = 0.
return error
def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, steer_actuator_delay, distances):
if len(psis) != CONTROL_N:
psis = [0.0]*CONTROL_N
curvatures = [0.0]*CONTROL_N
distances = [0.0] * CONTROL_N
v_ego = max(MIN_SPEED, v_ego)
# TODO this needs more thought, use .2s extra for now to estimate other delays
delay = max(0.01, steer_actuator_delay)
# MPC can plan to turn the wheel and turn back before t_delay. This means
# in high delay cases some corrections never even get commanded. So just use
# psi to calculate a simple linearization of desired curvature
current_curvature_desired = curvatures[0]
delayed_curvature_desired = np.interp(delay, ModelConstants.T_IDXS[:CONTROL_N], curvatures)
future_curvature_desired = np.interp(1.2, ModelConstants.T_IDXS[:CONTROL_N], curvatures)
psi = np.interp(delay, ModelConstants.T_IDXS[:CONTROL_N], psis)
distance = max(np.interp(delay, ModelConstants.T_IDXS[:CONTROL_N], distances), 0.001)
#average_curvature_desired = psi / (v_ego * delay)
# curve -> straight or reverse curve
if v_ego > 5 and abs(current_curvature_desired) > 0.002 and \
(abs(future_curvature_desired) < 0.001 or np.sign(current_curvature_desired) != np.sign(future_curvature_desired)):
psis_damping = 0.2
else:
psis_damping = 1.0
#psi *= psis_damping
average_curvature_desired = psi / distance
desired_curvature = 2 * average_curvature_desired - current_curvature_desired
# This is the "desired rate of the setpoint" not an actual desired rate
max_curvature_rate = MAX_LATERAL_JERK / (v_ego**2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755
safe_desired_curvature = np.clip(desired_curvature,
current_curvature_desired - max_curvature_rate * DT_MDL,
current_curvature_desired + max_curvature_rate * DT_MDL)
return safe_desired_curvature
def clamp(val, min_val, max_val):
clamped_val = float(np.clip(val, min_val, max_val))
return clamped_val, clamped_val != val
def smooth_value(val, prev_val, tau, dt=DT_MDL):
alpha = 1 - np.exp(-dt/tau) if tau > 0 else 1
return alpha * val + (1 - alpha) * prev_val
def clip_curvature(v_ego, prev_curvature, new_curvature, roll):
# This function respects ISO lateral jerk and acceleration limits + a max curvature
v_ego = max(v_ego, MIN_SPEED)
max_curvature_rate = MAX_LATERAL_JERK / (v_ego ** 2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755
new_curvature = np.clip(new_curvature,
prev_curvature - max_curvature_rate * DT_CTRL,
prev_curvature + max_curvature_rate * DT_CTRL)
roll_compensation = roll * ACCELERATION_DUE_TO_GRAVITY
max_lat_accel = MAX_LATERAL_ACCEL_NO_ROLL + roll_compensation
min_lat_accel = -MAX_LATERAL_ACCEL_NO_ROLL + roll_compensation
new_curvature, limited_accel = clamp(new_curvature, min_lat_accel / v_ego ** 2, max_lat_accel / v_ego ** 2)
new_curvature, limited_max_curv = clamp(new_curvature, -MAX_CURVATURE, MAX_CURVATURE)
new_curvature = np.clip(
new_curvature,
prev_curvature - MAX_CURVATURE_DELTA_FRAME,
prev_curvature + MAX_CURVATURE_DELTA_FRAME
)
was_limited = limited_accel or limited_max_curv or (abs(new_curvature - prev_curvature) >= MAX_CURVATURE_DELTA_FRAME)
return float(new_curvature), was_limited
def get_speed_error(modelV2: log.ModelDataV2, v_ego: float) -> float:
# ToDo: Try relative error, and absolute speed
if len(modelV2.temporalPose.trans):
vel_err = np.clip(modelV2.temporalPose.trans[0] - v_ego, -MAX_VEL_ERR, MAX_VEL_ERR)
return float(vel_err)
return 0.0
def get_accel_from_plan(speeds, accels, t_idxs, action_t=DT_MDL, vEgoStopping=0.05):
if len(speeds) == len(t_idxs):
v_now = speeds[0]
a_now = accels[0]
v_target = np.interp(action_t, t_idxs, speeds)
a_target = 2 * (v_target - v_now) / (action_t) - a_now
v_target_1sec = np.interp(action_t + 1.0, t_idxs, speeds)
v_max = np.max(speeds)
else:
v_now = 0.0
a_now = 0.0
v_target = 0.0
v_target_1sec = 0.0
a_target = 0.0
v_max = 0.0
should_stop = (v_target < vEgoStopping and
v_target_1sec < vEgoStopping)
return a_target, should_stop, v_now, v_max #v_target #v_now
def curv_from_psis(psi_target, psi_rate, vego, action_t):
vego = np.clip(vego, MIN_SPEED, np.inf)
curv_from_psi = psi_target / (vego * action_t)
return 2*curv_from_psi - psi_rate / vego
def get_curvature_from_plan(yaws, yaw_rates, t_idxs, vego, action_t):
psi_target = np.interp(action_t, t_idxs, yaws)
psi_rate = yaw_rates[0]
return curv_from_psis(psi_target, psi_rate, vego, action_t)

View File

@@ -0,0 +1,292 @@
import math
import numpy as np
from cereal import log
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.realtime import DT_MDL
# from openpilot.common.swaglog import cloudlog
# from openpilot.common.logger import sLogger
from openpilot.common.params import Params
TRAJECTORY_SIZE = 33
# positive numbers go right
#CAMERA_OFFSET = 0 #0.08
MIN_LANE_DISTANCE = 2.6
MAX_LANE_DISTANCE = 3.7
MAX_LANE_CENTERING_AWAY = 1.85
KEEP_MIN_DISTANCE_FROM_LANE = 1.35
KEEP_MIN_DISTANCE_FROM_EDGELANE = 1.15
def clamp(num, min_value, max_value):
# weird broken case, do something reasonable
if min_value > num > max_value:
return (min_value + max_value) * 0.5
# ok, basic min/max below
if num < min_value:
return min_value
if num > max_value:
return max_value
return num
def sigmoid(x, scale=1, offset=0):
return (1 / (1 + math.exp(x*scale))) + offset
def lerp(start, end, t):
t = clamp(t, 0.0, 1.0)
return (start * (1.0 - t)) + (end * t)
def max_abs(a, b):
return a if abs(a) > abs(b) else b
class LanePlanner:
def __init__(self):
self.ll_t = np.zeros((TRAJECTORY_SIZE,))
self.ll_x = np.zeros((TRAJECTORY_SIZE,))
self.lll_y = np.zeros((TRAJECTORY_SIZE,))
self.rll_y = np.zeros((TRAJECTORY_SIZE,))
self.le_y = np.zeros((TRAJECTORY_SIZE,))
self.re_y = np.zeros((TRAJECTORY_SIZE,))
#self.lane_width_estimate = FirstOrderFilter(3.2, 9.95, DT_MDL)
self.lane_width_estimate = FirstOrderFilter(3.2, 3.0, DT_MDL)
self.lane_width = 3.2
self.lane_width_last = self.lane_width
self.lane_change_multiplier = 1
#self.lane_width_updated_count = 0
self.lll_prob = 0.
self.rll_prob = 0.
self.d_prob = 0.
self.lll_std = 0.
self.rll_std = 0.
self.l_lane_change_prob = 0.
self.r_lane_change_prob = 0.
self.debugText = ""
self.lane_width_left = 0.0
self.lane_width_right = 0.0
self.lane_width_left_filtered = FirstOrderFilter(1.0, 1.0, DT_MDL)
self.lane_width_right_filtered = FirstOrderFilter(1.0, 1.0, DT_MDL)
self.lane_offset_filtered = FirstOrderFilter(0.0, 2.0, DT_MDL)
self.lanefull_mode = False
self.d_prob_count = 0
self.params = Params()
self.camera_offset = self.params.get_int("CameraOffset") * 0.01
def parse_model(self, md):
lane_lines = md.laneLines
edges = md.roadEdges
if len(lane_lines) >= 4 and len(lane_lines[0].t) == TRAJECTORY_SIZE:
self.ll_t = (np.array(lane_lines[1].t) + np.array(lane_lines[2].t))/2
# left and right ll x is the same
self.ll_x = lane_lines[1].x
self.lll_y = np.array(lane_lines[1].y)
self.rll_y = np.array(lane_lines[2].y)
self.lll_prob = md.laneLineProbs[1]
self.rll_prob = md.laneLineProbs[2]
self.lll_std = md.laneLineStds[1]
self.rll_std = md.laneLineStds[2]
if len(edges[0].t) == TRAJECTORY_SIZE:
self.le_y = np.array(edges[0].y) + md.roadEdgeStds[0] * 0.4
self.re_y = np.array(edges[1].y) - md.roadEdgeStds[1] * 0.4
else:
self.le_y = self.lll_y
self.re_y = self.rll_y
desire_state = md.meta.desireState
if len(desire_state):
self.l_lane_change_prob = desire_state[log.Desire.laneChangeLeft]
self.r_lane_change_prob = desire_state[log.Desire.laneChangeRight]
def get_d_path(self, CS, v_ego, path_t, path_xyz, curve_speed):
#if v_ego > 0.1:
# self.lane_width_updated_count = max(0, self.lane_width_updated_count - 1)
# Reduce reliance on lanelines that are too far apart or
# will be in a few seconds
l_prob, r_prob = self.lll_prob, self.rll_prob
width_pts = self.rll_y - self.lll_y
prob_mods = []
for t_check in (0.0, 1.5, 3.0):
width_at_t = np.interp(t_check * (v_ego + 7), self.ll_x, width_pts)
#prob_mods.append(np.interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
prob_mods.append(np.interp(width_at_t, [4.5, 6.0], [1.0, 0.0]))
mod = min(prob_mods)
l_prob *= mod
r_prob *= mod
# Reduce reliance on uncertain lanelines
l_std_mod = np.interp(self.lll_std, [.15, .3], [1.0, 0.0])
r_std_mod = np.interp(self.rll_std, [.15, .3], [1.0, 0.0])
l_prob *= l_std_mod
r_prob *= r_std_mod
self.l_prob, self.r_prob = l_prob, r_prob
# Find current lanewidth
current_lane_width = abs(self.rll_y[0] - self.lll_y[0])
max_updated_count = 10.0 * DT_MDL
both_lane_available = False
#speed_lane_width = np.interp(v_ego*3.6, [0., 60.], [2.8, 3.5])
if l_prob > 0.5 and r_prob > 0.5 and self.lane_change_multiplier > 0.5:
both_lane_available = True
#self.lane_width_updated_count = max_updated_count
self.lane_width_estimate.update(current_lane_width)
self.lane_width_last = self.lane_width_estimate.x
#elif self.lane_width_updated_count <= 0 and v_ego > 0.1: # 양쪽차선이 없을때.... 일정시간후(10초)부터 speed차선폭 적용함.
# self.lane_width_estimate.update(speed_lane_width)
else:
self.lane_width_estimate.update(self.lane_width_last)
self.lane_width = self.lane_width_estimate.x
clipped_lane_width = min(4.0, self.lane_width)
path_from_left_lane = self.lll_y + clipped_lane_width / 2.0
path_from_right_lane = self.rll_y - clipped_lane_width / 2.0
# 가장 차선이 진한쪽으로 골라서..
self.d_prob = max(l_prob, r_prob) if not both_lane_available else 1.0
# 좌/우의 차선폭을 필터링.
if self.lane_width_left > 0:
self.lane_width_left_filtered.update(self.lane_width_left)
#self.lane_width_left_filtered.x = self.lane_width_left #바로적용
if self.lane_width_right > 0:
self.lane_width_right_filtered.update(self.lane_width_right)
#self.lane_width_right_filtered.x = self.lane_width_right #바로적용
self.adjustLaneOffset = float(self.params.get_int("AdjustLaneOffset")) * 0.01
self.adjustCurveOffset = self.adjustLaneOffset #float(self.params.get_int("AdjustCurveOffset")) * 0.01
ADJUST_OFFSET_LIMIT = 0.4 #max(self.adjustLaneOffset, self.adjustCurveOffset)
offset_curve = 0.0
## curve offset
offset_curve = np.interp(abs(curve_speed), [50, 200], [self.adjustCurveOffset, 0.0]) * np.sign(curve_speed)
offset_lane = 0.0
if self.lane_width_left_filtered.x > 2.2 and self.lane_width_right_filtered.x > 2.2: #양쪽에 차로가 여유 있는경우
offset_lane = 0.0
elif self.lane_width_left_filtered.x < 2.0 and self.lane_width_right_filtered.x < 2.0: #양쪽에 차로가 여유 없는경우
offset_lane = 0.0
elif self.lane_width_left_filtered.x > self.lane_width_right_filtered.x:
offset_lane = np.interp(self.lane_width, [2.5, 2.9], [0.0, self.adjustLaneOffset]) # 차선이 좁으면 안함..
else:
offset_lane = np.interp(self.lane_width, [2.5, 2.9], [0.0, -self.adjustLaneOffset]) # 차선이 좁으면 안함..
#select lane path
# 차선이 좁아지면, 도로경계쪽에 있는 차선 위주로 따라가도록함.
if self.lane_width < 2.5:
if r_prob > 0.5 and self.lane_width_right_filtered.x < self.lane_width_left_filtered.x:
lane_path_y = path_from_right_lane
elif l_prob > 0.5 and self.lane_width_left_filtered.x < 2.0:
lane_path_y = path_from_left_lane
else:
lane_path_y = path_from_left_lane if l_prob > 0.5 or l_prob > r_prob else path_from_right_lane
elif l_prob > 0.7 and r_prob > 0.7:
lane_path_y = (path_from_left_lane + path_from_right_lane) / 2.
# lane_width filtering에 의해서, 점점 줄어들때, 중앙선으로 붙어가는 현상이 생김..
#if self.lane_width > 3.2:
# lane_path_y = path_from_right_lane
#else:
# lane_path_y = (path_from_left_lane + path_from_right_lane) / 2.
# 그외 진한차선을 따라가도록함.
else:
lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
use_laneless_center_adjust = False
if use_laneless_center_adjust:
## 0.5초 앞의 중심을 보도록함.
lane_path_y_center = np.interp(0.5, path_t, lane_path_y)
path_xyz_y_center = np.interp(0.5, path_t, path_xyz[:,1])
#lane_path_y_center = lane_path_y[0]
#path_xyz_y_center = path_xyz[:,1][0]
diff_center = (lane_path_y_center - path_xyz_y_center) if not self.lanefull_mode else 0.0
else:
diff_center = 0.0
#print("center = {:.2f}={:.2f}-{:.2f}, lanefull={}".format(diff_center, lane_path_y_center, path_xyz_y_center, self.lanefull_mode))
#diff_center = lane_path_y[5] - path_xyz[:,1][5] if not self.lanefull_mode else 0.0
if offset_curve * offset_lane < 0:
offset_total = np.clip(offset_curve + offset_lane + diff_center, - ADJUST_OFFSET_LIMIT, ADJUST_OFFSET_LIMIT)
else:
offset_total = np.clip(max(offset_curve, offset_lane, key=abs) + diff_center, - ADJUST_OFFSET_LIMIT, ADJUST_OFFSET_LIMIT)
## self.d_prob = 0 if lane_changing
self.d_prob *= self.lane_change_multiplier ## 차선변경중에는 꺼버림.
if self.lane_change_multiplier < 0.5:
#self.lane_offset_filtered.x = 0.0
pass
else:
self.lane_offset_filtered.update(np.interp(self.d_prob, [0, 0.3], [0, offset_total]))
## laneless at lowspeed
self.d_prob *= np.interp(v_ego*3.6, [5., 10.], [0.0, 1.0])
#self.debugText = "OFFSET({:.2f}={:.2f}+{:.2f}+{:.2f}),Vc:{:.2f},dp:{:.1f},lf:{},lrw={:.1f}|{:.1f}|{:.1f}".format(
# self.lane_offset_filtered.x,
# diff_center, offset_lane, offset_curve,
# curve_speed,
# self.d_prob, self.lanefull_mode,
# self.lane_width_left_filtered.x, self.lane_width, self.lane_width_right_filtered.x)
adjustLaneTime = self.params.get_float("LatMpcInputOffset") * 0.01 # 0.06
laneline_active = False
self.d_prob_count = self.d_prob_count + 1 if self.d_prob > 0.3 else 0
if self.lanefull_mode and self.d_prob_count > int(1 / DT_MDL):
laneline_active = True
use_dist_mode = False ## 아무리생각해봐도.. 같은 방법인듯...
if use_dist_mode:
lane_path_y_interp = np.interp(path_xyz[:,0] + v_ego * adjustLaneTime, self.ll_x, lane_path_y)
path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1]
else:
safe_idxs = np.isfinite(self.ll_t)
if safe_idxs[0]:
lane_path_y_interp = np.interp(path_t * (1.0 + adjustLaneTime), self.ll_t[safe_idxs], lane_path_y[safe_idxs])
path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1]
path_xyz[:, 1] += (self.camera_offset + self.lane_offset_filtered.x)
self.offset_total = self.lane_offset_filtered.x
return path_xyz, laneline_active
def calculate_plan_yaw_and_yaw_rate(self, path_xyz):
if path_xyz.shape[0] < 3:
# 너무 짧으면 직진 가정
N = path_xyz.shape[0]
return np.zeros(N), np.zeros(N)
# x, y 추출
x = path_xyz[:, 0]
y = path_xyz[:, 1]
# 모두 동일한 점인지 확인
if np.allclose(x, x[0]) and np.allclose(y, y[0]):
return np.zeros(len(x)), np.zeros(len(x))
# 안전한 diff 계산
dx = np.diff(x)
dy = np.diff(y)
mask = (dx == 0) & (dy == 0)
dx[mask] = 1e-4
dy[mask] = 0.0
yaw = np.arctan2(dy, dx)
yaw = np.append(yaw, yaw[-1]) # N-1 → N
yaw = np.unwrap(yaw)
dx_full = np.clip(np.diff(x), 1e-4, None)
yaw_rate = np.diff(yaw) / dx_full
yaw_rate = np.append(yaw_rate, yaw_rate[-1])
yaw_rate = np.append(yaw_rate, 0.0)
# NaN/Inf 방어
if np.any(np.isnan(yaw_rate)) or np.any(np.isinf(yaw_rate)):
yaw_rate = np.zeros_like(yaw_rate)
if np.any(np.isnan(yaw)) or np.any(np.isinf(yaw)):
yaw = np.zeros_like(yaw)
return yaw, yaw_rate

View File

@@ -0,0 +1,33 @@
import numpy as np
from abc import abstractmethod, ABC
from openpilot.common.realtime import DT_CTRL
MIN_LATERAL_CONTROL_SPEED = 0.3 # m/s
class LatControl(ABC):
def __init__(self, CP, CI):
self.sat_count_rate = 1.0 * DT_CTRL
self.sat_limit = CP.steerLimitTimer
self.sat_count = 0.
self.sat_check_min_speed = 10.
# we define the steer torque scale as [-1.0...1.0]
self.steer_max = 1.0
@abstractmethod
def update(self, active, CS, VM, params, steer_limited_by_controls, desired_curvature, CC, curvature_limited, model_data=None):
pass
def reset(self):
self.sat_count = 0.
def _check_saturation(self, saturated, CS, steer_limited_by_controls, curvature_limited):
# Saturated only if control output is not being limited by car torque/angle rate limits
if (saturated or curvature_limited) and CS.vEgo > self.sat_check_min_speed and not steer_limited_by_controls and not CS.steeringPressed:
self.sat_count += self.sat_count_rate
else:
self.sat_count -= self.sat_count_rate
self.sat_count = np.clip(self.sat_count, 0.0, self.sat_limit)
return self.sat_count > (self.sat_limit - 1e-3)

View File

@@ -0,0 +1,30 @@
import math
import numpy as np
from cereal import log
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
STEER_ANGLE_SATURATION_THRESHOLD = 2.5 # Degrees
class LatControlAngle(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.sat_check_min_speed = 5.
def update(self, active, CS, VM, params, steer_limited_by_controls, desired_curvature, CC, curvature_limited, model_data=None):
angle_log = log.ControlsState.LateralAngleState.new_message()
if not active:
angle_log.active = False
angle_steers_des = float(CS.steeringAngleDeg)
else:
angle_log.active = True
angle_steers_des = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
angle_steers_des += params.angleOffsetDeg
angle_control_saturated = abs(angle_steers_des - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD
angle_log.saturated = bool(self._check_saturation(angle_control_saturated, CS, False, curvature_limited))
angle_log.steeringAngleDeg = float(CS.steeringAngleDeg)
angle_log.steeringAngleDesiredDeg = float(angle_steers_des) if not CS.steeringPressed else float(CS.steeringAngleDeg)
return 0, float(angle_steers_des), angle_log

View File

@@ -0,0 +1,48 @@
import math
from cereal import log
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
from openpilot.common.pid import PIDController
class LatControlPID(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.pid = PIDController((CP.lateralTuning.pid.kpBP, CP.lateralTuning.pid.kpV),
(CP.lateralTuning.pid.kiBP, CP.lateralTuning.pid.kiV),
k_f=CP.lateralTuning.pid.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max)
self.get_steer_feedforward = CI.get_steer_feedforward_function()
def reset(self):
super().reset()
self.pid.reset()
def update(self, active, CS, VM, params, steer_limited_by_controls, desired_curvature, CC, curvature_limited, model_data=None):
pid_log = log.ControlsState.LateralPIDState.new_message()
pid_log.steeringAngleDeg = float(CS.steeringAngleDeg)
pid_log.steeringRateDeg = float(CS.steeringRateDeg)
angle_steers_des_no_offset = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
angle_steers_des = angle_steers_des_no_offset + params.angleOffsetDeg
error = angle_steers_des - CS.steeringAngleDeg
pid_log.steeringAngleDesiredDeg = angle_steers_des
pid_log.angleError = error
if not active:
output_steer = 0.0
pid_log.active = False
self.pid.reset()
else:
# offset does not contribute to resistive torque
steer_feedforward = self.get_steer_feedforward(angle_steers_des_no_offset, CS.vEgo)
output_steer = self.pid.update(error, override=CS.steeringPressed,
feedforward=steer_feedforward, speed=CS.vEgo)
pid_log.active = True
pid_log.p = float(self.pid.p)
pid_log.i = float(self.pid.i)
pid_log.f = float(self.pid.f)
pid_log.output = float(output_steer)
pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS, steer_limited_by_controls, curvature_limited))
return output_steer, angle_steers_des, pid_log

View File

@@ -0,0 +1,304 @@
from collections import deque
import math
import numpy as np
from cereal import log
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N
from opendbc.car.interfaces import LatControlInputs
from opendbc.car.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
from openpilot.common.pid import PIDController
from openpilot.common.params import Params
# At higher speeds (25+mph) we can assume:
# Lateral acceleration achieved by a specific car correlates to
# torque applied to the steering rack. It does not correlate to
# wheel slip, or to speed.
# This controller applies torque to achieve desired lateral
# accelerations. To compensate for the low speed effects we
# use a LOW_SPEED_FACTOR in the error. Additionally, there is
# friction in the steering wheel that needs to be overcome to
# move it at all, this is compensated for too.
LOW_SPEED_X = [0, 10, 20, 30]
LOW_SPEED_Y = [15, 13, 10, 5]
LOW_SPEED_Y_NN = [12, 3, 1, 0]
LAT_PLAN_MIN_IDX = 5
def get_predicted_lateral_jerk(lat_accels, t_diffs):
# compute finite difference between subsequent model_data.acceleration.y values
# this is just two calls of np.diff followed by an element-wise division
lat_accel_diffs = np.diff(lat_accels)
lat_jerk = lat_accel_diffs / t_diffs
# return as python list
return lat_jerk.tolist()
def sign(x):
return 1.0 if x > 0.0 else (-1.0 if x < 0.0 else 0.0)
def get_lookahead_value(future_vals, current_val):
if len(future_vals) == 0:
return current_val
same_sign_vals = [v for v in future_vals if sign(v) == sign(current_val)]
# if any future val has opposite sign of current val, return 0
if len(same_sign_vals) < len(future_vals):
return 0.0
# otherwise return the value with minimum absolute value
min_val = min(same_sign_vals + [current_val], key=lambda x: abs(x))
return min_val
# At a given roll, if pitch magnitude increases, the
# gravitational acceleration component starts pointing
# in the longitudinal direction, decreasing the lateral
# acceleration component. Here we do the same thing
# to the roll value itself, then passed to nnff.
def roll_pitch_adjust(roll, pitch):
return roll * math.cos(pitch)
class LatControlTorque(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.torque_params = CP.lateralTuning.torque.as_builder()
self.pid = PIDController(self.torque_params.kp, self.torque_params.ki,
k_f=self.torque_params.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max)
self.torque_from_lateral_accel = CI.torque_from_lateral_accel()
self.use_steering_angle = self.torque_params.useSteeringAngle
self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg
# carrot
self.frame = 0
self.params = Params()
self.lateralTorqueCustom = self.params.get_int("LateralTorqueCustom")
self.latAccelFactor_default = self.torque_params.latAccelFactor
self.latAccelOffset_default = self.torque_params.latAccelOffset
self.friction_default = self.torque_params.friction
# Twilsonco's Lateral Neural Network Feedforward
self.use_nnff = CI.use_nnff
self.use_nnff_lite = CI.use_nnff_lite
if self.use_nnff or self.use_nnff_lite:
# Instantaneous lateral jerk changes very rapidly, making it not useful on its own,
# however, we can "look ahead" to the future planned lateral jerk in order to guage
# whether the current desired lateral jerk will persist into the future, i.e.
# whether it's "deliberate" or not. This lets us simply ignore short-lived jerk.
# Note that LAT_PLAN_MIN_IDX is defined above and is used in order to prevent
# using a "future" value that is actually planned to occur before the "current" desired
# value, which is offset by the steerActuatorDelay.
self.friction_look_ahead_v = [1.4, 2.0] # how many seconds in the future to look ahead in [0, ~2.1] in 0.1 increments
self.friction_look_ahead_bp = [9.0, 30.0] # corresponding speeds in m/s in [0, ~40] in 1.0 increments
# Scaling the lateral acceleration "friction response" could be helpful for some.
# Increase for a stronger response, decrease for a weaker response.
self.lat_jerk_friction_factor = 0.4
self.lat_accel_friction_factor = 0.7 # in [0, 3], in 0.05 increments. 3 is arbitrary safety limit
# precompute time differences between ModelConstants.T_IDXS
self.t_diffs = np.diff(ModelConstants.T_IDXS)
self.desired_lat_jerk_time = self.params.get_float("SteerActuatorDelay") * 0.01 + 0.3
if self.use_nnff:
self.pitch = FirstOrderFilter(0.0, 0.5, 0.01)
# NN model takes current v_ego, lateral_accel, lat accel/jerk error, roll, and past/future/planned data
# of lat accel and roll
# Past value is computed using previous desired lat accel and observed roll
self.torque_from_nn = CI.get_ff_nn
self.nn_friction_override = CI.lat_torque_nn_model.friction_override
# setup future time offsets
self.nn_time_offset = CP.steerActuatorDelay + 0.2
future_times = [0.3, 0.6, 1.0, 1.5] # seconds in the future
self.nn_future_times = [i + self.nn_time_offset for i in future_times]
self.nn_future_times_np = np.array(self.nn_future_times)
# setup past time offsets
self.past_times = [-0.3, -0.2, -0.1]
history_check_frames = [int(abs(i)*100) for i in self.past_times]
self.history_frame_offsets = [history_check_frames[0] - i for i in history_check_frames]
self.lateral_accel_desired_deque = deque(maxlen=history_check_frames[0])
self.roll_deque = deque(maxlen=history_check_frames[0])
self.error_deque = deque(maxlen=history_check_frames[0])
self.past_future_len = len(self.past_times) + len(self.nn_future_times)
def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction):
if self.lateralTorqueCustom > 0:
return
self.torque_params.latAccelFactor = latAccelFactor
self.torque_params.latAccelOffset = latAccelOffset
self.torque_params.friction = friction
def update(self, active, CS, VM, params, steer_limited_by_controls, desired_curvature, CC, curvature_limited, model_data=None):
self.frame += 1
if self.frame % 100 == 0:
lateralTorqueCustom = self.params.get_int("LateralTorqueCustom")
if lateralTorqueCustom == 1:
self.torque_params.latAccelFactor = self.params.get_float("LateralTorqueAccelFactor")*0.001
self.torque_params.friction = self.params.get_float("LateralTorqueFriction")*0.001
lateralTorqueKp = self.params.get_float("LateralTorqueKpV")*0.01
lateralTorqueKi = self.params.get_float("LateralTorqueKiV")*0.01
lateralTorqueKf = self.params.get_float("LateralTorqueKf")*0.01
lateralTorqueKd = self.params.get_float("LateralTorqueKd")*0.01
self.pid._k_p = [[0], [lateralTorqueKp]]
self.pid._k_i = [[0], [lateralTorqueKi]]
self.pid.k_f = lateralTorqueKf
self.pid._k_d = [[0], [lateralTorqueKd]]
self.torque_params.latAccelOffset = self.latAccelOffset_default
elif self.lateralTorqueCustom > 1: # 1 -> 0, reset to default
self.torque_params.latAccelFactor = self.latAccelFactor_default
self.torque_params.friction = self.friction_default
self.torque_params.latAccelOffset = self.latAccelOffset_default
self.lateralTorqueCustom = lateralTorqueCustom
pid_log = log.ControlsState.LateralTorqueState.new_message()
nn_log = None
if not active:
output_torque = 0.0
pid_log.active = False
angle_steers_des = float(CS.steeringAngleDeg)
else:
angle_steers_des = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
angle_steers_des += params.angleOffsetDeg
actual_curvature_vm = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY
actual_lateral_jerk = 0.0
if self.use_steering_angle:
actual_curvature = actual_curvature_vm
curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0))
if self.use_nnff or self.use_nnff_lite:
actual_curvature_rate = -VM.calc_curvature(math.radians(CS.steeringRateDeg), CS.vEgo, 0.0)
actual_lateral_jerk = actual_curvature_rate * CS.vEgo ** 2
else:
actual_curvature_llk = CC.angularVelocity[2] / CS.vEgo #llk.angularVelocityCalibrated.value[2] / CS.vEgo
actual_curvature = np.interp(CS.vEgo, [2.0, 5.0], [actual_curvature_vm, actual_curvature_llk])
curvature_deadzone = 0.0
desired_lateral_accel = desired_curvature * CS.vEgo ** 2
# desired rate is the desired rate of change in the setpoint, not the absolute desired curvature
# desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2
actual_lateral_accel = actual_curvature * CS.vEgo ** 2
lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2
low_speed_factor = np.interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2
setpoint = desired_lateral_accel + low_speed_factor * desired_curvature
measurement = actual_lateral_accel + low_speed_factor * actual_curvature
lateral_jerk_setpoint = 0
lateral_jerk_measurement = 0
lookahead_lateral_jerk = 0
model_good = model_data is not None and len(model_data.orientation.x) >= CONTROL_N
if model_good and (self.use_nnff or self.use_nnff_lite):
# prepare "look-ahead" desired lateral jerk
lookahead = np.interp(CS.vEgo, self.friction_look_ahead_bp, self.friction_look_ahead_v)
friction_upper_idx = next((i for i, val in enumerate(ModelConstants.T_IDXS) if val > lookahead), 16)
predicted_lateral_jerk = get_predicted_lateral_jerk(model_data.acceleration.y, self.t_diffs)
desired_lateral_jerk = (np.interp(self.desired_lat_jerk_time, ModelConstants.T_IDXS, model_data.acceleration.y) - desired_lateral_accel) / self.desired_lat_jerk_time
lookahead_lateral_jerk = get_lookahead_value(predicted_lateral_jerk[LAT_PLAN_MIN_IDX:friction_upper_idx], desired_lateral_jerk)
if self.use_steering_angle or lookahead_lateral_jerk == 0.0:
lookahead_lateral_jerk = 0.0
actual_lateral_jerk = 0.0
self.lat_accel_friction_factor = 1.0
lateral_jerk_setpoint = self.lat_jerk_friction_factor * lookahead_lateral_jerk
lateral_jerk_measurement = self.lat_jerk_friction_factor * actual_lateral_jerk
if self.use_nnff and model_good:
# update past data
pitch = 0
roll = params.roll
if len(CC.orientationNED) > 1:
pitch = self.pitch.update(CC.orientationNED[1])
roll = roll_pitch_adjust(roll, pitch)
self.roll_deque.append(roll)
self.lateral_accel_desired_deque.append(desired_lateral_accel)
# prepare past and future values
# adjust future times to account for longitudinal acceleration
adjusted_future_times = [t + 0.5*CS.aEgo*(t/max(CS.vEgo, 1.0)) for t in self.nn_future_times]
past_rolls = [self.roll_deque[min(len(self.roll_deque)-1, i)] for i in self.history_frame_offsets]
future_rolls = [roll_pitch_adjust(np.interp(t, ModelConstants.T_IDXS, model_data.orientation.x) + roll, np.interp(t, ModelConstants.T_IDXS, model_data.orientation.y) + pitch) for t in adjusted_future_times]
past_lateral_accels_desired = [self.lateral_accel_desired_deque[min(len(self.lateral_accel_desired_deque)-1, i)] for i in self.history_frame_offsets]
future_planned_lateral_accels = [np.interp(t, ModelConstants.T_IDXS, model_data.acceleration.y) for t in adjusted_future_times]
# compute NNFF error response
nnff_setpoint_input = [CS.vEgo, setpoint, lateral_jerk_setpoint, roll] \
+ [setpoint] * self.past_future_len \
+ past_rolls + future_rolls
# past lateral accel error shouldn't count, so use past desired like the setpoint input
nnff_measurement_input = [CS.vEgo, measurement, lateral_jerk_measurement, roll] \
+ [measurement] * self.past_future_len \
+ past_rolls + future_rolls
torque_from_setpoint = self.torque_from_nn(nnff_setpoint_input)
torque_from_measurement = self.torque_from_nn(nnff_measurement_input)
pid_log.error = float(torque_from_setpoint - torque_from_measurement)
error_blend_factor = np.interp(abs(desired_lateral_accel), [1.0, 2.0], [0.0, 1.0])
if error_blend_factor > 0.0: # blend in stronger error response when in high lat accel
nnff_error_input = [CS.vEgo, setpoint - measurement, lateral_jerk_setpoint - lateral_jerk_measurement, 0.0]
torque_from_error = self.torque_from_nn(nnff_error_input)
if sign(pid_log.error) == sign(torque_from_error) and abs(pid_log.error) < abs(torque_from_error):
pid_log.error = float(pid_log.error * (1.0 - error_blend_factor) + torque_from_error * error_blend_factor)
# compute feedforward (same as nn setpoint output)
error = setpoint - measurement
friction_input = self.lat_accel_friction_factor * error + self.lat_jerk_friction_factor * lookahead_lateral_jerk
nn_input = [CS.vEgo, desired_lateral_accel, friction_input, roll] \
+ past_lateral_accels_desired + future_planned_lateral_accels \
+ past_rolls + future_rolls
ff = self.torque_from_nn(nn_input)
# apply friction override for cars with low NN friction response
if self.nn_friction_override:
pid_log.error += self.torque_from_lateral_accel(LatControlInputs(0.0, 0.0, CS.vEgo, CS.aEgo), self.torque_params,
friction_input, lateral_accel_deadzone, friction_compensation=True, gravity_adjusted=False)
nn_log = nn_input + nnff_setpoint_input + nnff_measurement_input
else:
gravity_adjusted_lateral_accel = desired_lateral_accel - roll_compensation
torque_from_setpoint = self.torque_from_lateral_accel(LatControlInputs(setpoint, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
lateral_jerk_setpoint, lateral_accel_deadzone, friction_compensation=self.use_nnff_lite, gravity_adjusted=False)
torque_from_measurement = self.torque_from_lateral_accel(LatControlInputs(measurement, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
lateral_jerk_measurement, lateral_accel_deadzone, friction_compensation=self.use_nnff_lite, gravity_adjusted=False)
pid_log.error = float(torque_from_setpoint - torque_from_measurement)
error = desired_lateral_accel - actual_lateral_accel
if self.use_nnff_lite:
friction_input = self.lat_accel_friction_factor * error + self.lat_jerk_friction_factor * lookahead_lateral_jerk
else:
friction_input = error
ff = self.torque_from_lateral_accel(LatControlInputs(gravity_adjusted_lateral_accel, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
friction_input, lateral_accel_deadzone, friction_compensation=True,
gravity_adjusted=True)
freeze_integrator = steer_limited_by_controls or CS.steeringPressed or CS.vEgo < 5
output_torque = self.pid.update(pid_log.error,
feedforward=ff,
speed=CS.vEgo,
freeze_integrator=freeze_integrator)
pid_log.active = True
pid_log.p = float(self.pid.p)
pid_log.i = float(self.pid.i)
pid_log.d = float(self.pid.d)
pid_log.f = float(self.pid.f)
pid_log.output = float(-output_torque)
pid_log.actualLateralAccel = float(actual_lateral_accel)
pid_log.desiredLateralAccel = float(desired_lateral_accel)
pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited_by_controls, curvature_limited))
#if nn_log is not None:
# pid_log.nnLog = nn_log
# TODO left is positive in this convention
return -output_torque,angle_steers_des, pid_log

View File

@@ -0,0 +1,538 @@
{
"acados_include_path": "/data/openpilot/third_party/acados/include",
"acados_lib_path": "/data/openpilot/third_party/acados/lib",
"code_export_directory": "/data/openpilot/selfdrive/controls/lib/lateral_mpc_lib/c_generated_code",
"constraints": {
"C": [],
"C_e": [],
"D": [],
"constr_type": "BGH",
"constr_type_e": "BGH",
"idxbu": [],
"idxbx": [
2,
3
],
"idxbx_0": [
0,
1,
2,
3
],
"idxbx_e": [],
"idxbxe_0": [
0,
1,
2,
3
],
"idxsbu": [],
"idxsbx": [],
"idxsbx_e": [],
"idxsg": [],
"idxsg_e": [],
"idxsh": [],
"idxsh_e": [],
"idxsphi": [],
"idxsphi_e": [],
"lbu": [],
"lbx": [
-1.5707963267948966,
-0.8726646259971648
],
"lbx_0": [
0.0,
0.0,
0.0,
0.0
],
"lbx_e": [],
"lg": [],
"lg_e": [],
"lh": [],
"lh_e": [],
"lphi": [],
"lphi_e": [],
"lsbu": [],
"lsbx": [],
"lsbx_e": [],
"lsg": [],
"lsg_e": [],
"lsh": [],
"lsh_e": [],
"lsphi": [],
"lsphi_e": [],
"ubu": [],
"ubx": [
1.5707963267948966,
0.8726646259971648
],
"ubx_0": [
0.0,
0.0,
0.0,
0.0
],
"ubx_e": [],
"ug": [],
"ug_e": [],
"uh": [],
"uh_e": [],
"uphi": [],
"uphi_e": [],
"usbu": [],
"usbx": [],
"usbx_e": [],
"usg": [],
"usg_e": [],
"ush": [],
"ush_e": [],
"usphi": [],
"usphi_e": []
},
"cost": {
"Vu": [],
"Vu_0": [],
"Vx": [],
"Vx_0": [],
"Vx_e": [],
"Vz": [],
"Vz_0": [],
"W": [
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
]
],
"W_0": [
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
]
],
"W_e": [
[
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0
]
],
"Zl": [],
"Zl_e": [],
"Zu": [],
"Zu_e": [],
"cost_ext_fun_type": "casadi",
"cost_ext_fun_type_0": "casadi",
"cost_ext_fun_type_e": "casadi",
"cost_type": "NONLINEAR_LS",
"cost_type_0": "NONLINEAR_LS",
"cost_type_e": "NONLINEAR_LS",
"yref": [
0.0,
0.0,
0.0,
0.0,
0.0
],
"yref_0": [
0.0,
0.0,
0.0,
0.0,
0.0
],
"yref_e": [
0.0,
0.0,
0.0
],
"zl": [],
"zl_e": [],
"zu": [],
"zu_e": []
},
"cython_include_dirs": [
"/usr/local/venv/lib/python3.12/site-packages/numpy/_core/include",
"/usr/include/python3.12"
],
"dims": {
"N": 32,
"nbu": 0,
"nbx": 2,
"nbx_0": 4,
"nbx_e": 0,
"nbxe_0": 4,
"ng": 0,
"ng_e": 0,
"nh": 0,
"nh_e": 0,
"np": 2,
"nphi": 0,
"nphi_e": 0,
"nr": 0,
"nr_e": 0,
"ns": 0,
"ns_e": 0,
"nsbu": 0,
"nsbx": 0,
"nsbx_e": 0,
"nsg": 0,
"nsg_e": 0,
"nsh": 0,
"nsh_e": 0,
"nsphi": 0,
"nsphi_e": 0,
"nu": 1,
"nx": 4,
"ny": 5,
"ny_0": 5,
"ny_e": 3,
"nz": 0
},
"json_file": "/data/openpilot/selfdrive/controls/lib/lateral_mpc_lib/acados_ocp_lat.json",
"model": {
"con_h_expr": null,
"con_h_expr_e": null,
"con_phi_expr": null,
"con_phi_expr_e": null,
"con_r_expr": null,
"con_r_expr_e": null,
"con_r_in_phi": null,
"con_r_in_phi_e": null,
"cost_conl_custom_outer_hess": null,
"cost_conl_custom_outer_hess_0": null,
"cost_conl_custom_outer_hess_e": null,
"cost_expr_ext_cost": null,
"cost_expr_ext_cost_0": null,
"cost_expr_ext_cost_custom_hess": null,
"cost_expr_ext_cost_custom_hess_0": null,
"cost_expr_ext_cost_custom_hess_e": null,
"cost_expr_ext_cost_e": null,
"cost_psi_expr": null,
"cost_psi_expr_0": null,
"cost_psi_expr_e": null,
"cost_r_in_psi_expr": null,
"cost_r_in_psi_expr_0": null,
"cost_r_in_psi_expr_e": null,
"cost_y_expr": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegjaaaaaaaaaaaaaaafaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaafaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaajhpffghgpgegdaaaaaaaaaaaaaaaegbaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegmcaaaaaaaaaaaaaajgkaaaaaaaegpcaaaaaaaaaaaaaahaaaaaaaahdhjgpffghgpgegdaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaamaaaaaaaahdhjgpfchbgehfgpffghgpgegdaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaaahdhjgpfbgdgdgfgmgpffghgpgegeaaaaaaaaaaaaaaachjaaaaaaaaaaaaaaaegbaaaaaaaaaaaaaaachcaaaaaaaaaaaaaaaegmcaaaaaaaaaaaaaachkjjjjjjjjjjjjlpd",
"cost_y_expr_0": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegjaaaaaaaaaaaaaaafaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaafaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaajhpffghgpgegdaaaaaaaaaaaaaaaegbaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegmcaaaaaaaaaaaaaajgkaaaaaaaegpcaaaaaaaaaaaaaahaaaaaaaahdhjgpffghgpgegdaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaamaaaaaaaahdhjgpfchbgehfgpffghgpgegdaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaaahdhjgpfbgdgdgfgmgpffghgpgegeaaaaaaaaaaaaaaachjaaaaaaaaaaaaaaaegbaaaaaaaaaaaaaaachcaaaaaaaaaaaaaaaegmcaaaaaaaaaaaaaachkjjjjjjjjjjjjlpd",
"cost_y_expr_e": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaeghaaaaaaaaaaaaaaadaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaajhpffghgpgegdaaaaaaaaaaaaaaaegbaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegmcaaaaaaaaaaaaaajgkaaaaaaaegpcaaaaaaaaaaaaaahaaaaaaaahdhjgpffghgpgegdaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaamaaaaaaaahdhjgpfchbgehfgpffghgpg",
"disc_dyn_expr": null,
"dyn_disc_fun": null,
"dyn_disc_fun_jac": null,
"dyn_disc_fun_jac_hess": null,
"dyn_ext_fun_type": "casadi",
"dyn_generic_source": null,
"f_expl_expr": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegiaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegoaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaahaaaaaaaahdhjgpffghgpgegdaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaapaaaaaaachpgehbgehjgpgogpfchbgegjgfhdhegnaaaaaaaaaaaaaaachcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaamaaaaaaaahdhjgpfchbgehfgpffghgpgegbaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaachbaaaaaaaaaaaaaaaegnaaaaaaaaaaaaaaachcaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaachfaaaaaaaaaaaaaaaegoaaaaaaaaaaaaaaachcaaaaaaaaaaaaaaachiaaaaaaaaaaaaaaachiaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaaahdhjgpfbgdgdgfgmgpffghgpg",
"f_impl_expr": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegiaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaajaaaaaaaihpffghgpgpfegpgehegcaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegoaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaahaaaaaaaahdhjgpffghgpgegdaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaapaaaaaaachpgehbgehjgpgogpfchbgegjgfhdhegnaaaaaaaaaaaaaaachdaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaamaaaaaaaahdhjgpfchbgehfgpffghgpgegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaajaaaaaaajhpffghgpgpfegpgehegbaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaachcaaaaaaaaaaaaaaaegnaaaaaaaaaaaaaaachdaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaachgaaaaaaaaaaaaaaaegoaaaaaaaaaaaaaaachdaaaaaaaaaaaaaaachjaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaalaaaaaaaahdhjgpffghgpgpfegpgehchjaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaaabaaaaaaahdhjgpfchbgehfgpffghgpgpfegpgehegpcaaaaaaaaaaaaaanaaaaaaaahdhjgpfbgdgdgfgmgpffghgpg",
"gnsf": {
"nontrivial_f_LO": 1,
"purely_linear": 0
},
"name": "lat",
"p": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaeggaaaaaaaaaaaaaaacaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegpcaaaaaaaaaaaaaapaaaaaaachpgehbgehjgpgogpfchbgegjgfhdh",
"u": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegfaaaaaaaaaaaaaaabaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaaahdhjgpfbgdgdgfgmgpffghgpg",
"x": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegiaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaihpffghgpgegpcaaaaaaaaaaaaaafaaaaaaajhpffghgpgegpcaaaaaaaaaaaaaahaaaaaaaahdhjgpffghgpgegpcaaaaaaaaaaaaaamaaaaaaaahdhjgpfchbgehfgpffghgpg",
"xdot": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegiaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaajaaaaaaaihpffghgpgpfegpgehegpcaaaaaaaaaaaaaajaaaaaaajhpffghgpgpfegpgehegpcaaaaaaaaaaaaaalaaaaaaaahdhjgpffghgpgpfegpgehegpcaaaaaaaaaaaaaaabaaaaaaahdhjgpfchbgehfgpffghgpgpfegpgeh",
"z": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
"parameter_values": [
0.0,
0.0
],
"problem_class": "OCP",
"shared_lib_ext": ".so",
"solver_options": {
"Tsim": 0.009765625,
"alpha_min": 0.05,
"alpha_reduction": 0.7,
"collocation_type": "GAUSS_LEGENDRE",
"custom_templates": [],
"custom_update_copy": true,
"custom_update_filename": "",
"custom_update_header_filename": "",
"eps_sufficient_descent": 0.0001,
"exact_hess_constr": 1,
"exact_hess_cost": 1,
"exact_hess_dyn": 1,
"ext_cost_num_hess": 0,
"ext_fun_compile_flags": "-O2",
"full_step_dual": 0,
"globalization": "FIXED_STEP",
"globalization_use_SOC": 0,
"hessian_approx": "GAUSS_NEWTON",
"hpipm_mode": "BALANCE",
"initialize_t_slacks": 0,
"integrator_type": "ERK",
"levenberg_marquardt": 0.0,
"line_search_use_sufficient_descent": 0,
"model_external_shared_lib_dir": null,
"model_external_shared_lib_name": null,
"nlp_solver_ext_qp_res": 0,
"nlp_solver_max_iter": 100,
"nlp_solver_step_length": 1.0,
"nlp_solver_tol_comp": 1e-06,
"nlp_solver_tol_eq": 1e-06,
"nlp_solver_tol_ineq": 1e-06,
"nlp_solver_tol_stat": 1e-06,
"nlp_solver_type": "SQP_RTI",
"print_level": 0,
"qp_solver": "PARTIAL_CONDENSING_HPIPM",
"qp_solver_cond_N": 1,
"qp_solver_cond_ric_alg": 1,
"qp_solver_iter_max": 1,
"qp_solver_ric_alg": 1,
"qp_solver_tol_comp": null,
"qp_solver_tol_eq": null,
"qp_solver_tol_ineq": null,
"qp_solver_tol_stat": null,
"qp_solver_warm_start": 0,
"regularize_method": null,
"shooting_nodes": [
0.0,
0.009765625,
0.0390625,
0.087890625,
0.15625,
0.244140625,
0.3515625,
0.478515625,
0.625,
0.791015625,
0.9765625,
1.181640625,
1.40625,
1.650390625,
1.9140625,
2.197265625,
2.5,
2.822265625,
3.1640625,
3.525390625,
3.90625,
4.306640625,
4.7265625,
5.166015625,
5.625,
6.103515625,
6.6015625,
7.119140625,
7.65625,
8.212890625,
8.7890625,
9.384765625,
10.0
],
"sim_method_jac_reuse": [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
],
"sim_method_newton_iter": 3,
"sim_method_newton_tol": 0.0,
"sim_method_num_stages": [
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4
],
"sim_method_num_steps": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"tf": 10.0,
"time_steps": [
0.009765625,
0.029296875,
0.048828125,
0.068359375,
0.087890625,
0.107421875,
0.126953125,
0.146484375,
0.166015625,
0.185546875,
0.205078125,
0.224609375,
0.244140625,
0.263671875,
0.283203125,
0.302734375,
0.322265625,
0.341796875,
0.361328125,
0.380859375,
0.400390625,
0.419921875,
0.439453125,
0.458984375,
0.478515625,
0.498046875,
0.517578125,
0.537109375,
0.556640625,
0.576171875,
0.595703125,
0.615234375
]
}
}

View File

@@ -0,0 +1,211 @@
#
# Copyright (c) The acados authors.
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
# define sources and use make's implicit rules to generate object files (*.o)
# model
MODEL_SRC=
MODEL_SRC+= lat_model/lat_expl_ode_fun.c
MODEL_SRC+= lat_model/lat_expl_vde_forw.c
MODEL_SRC+= lat_model/lat_expl_vde_adj.c
MODEL_OBJ := $(MODEL_SRC:.c=.o)
# optimal control problem - mostly CasADi exports
OCP_SRC=
OCP_SRC+= lat_cost/lat_cost_y_0_fun.c
OCP_SRC+= lat_cost/lat_cost_y_0_fun_jac_ut_xt.c
OCP_SRC+= lat_cost/lat_cost_y_0_hess.c
OCP_SRC+= lat_cost/lat_cost_y_fun.c
OCP_SRC+= lat_cost/lat_cost_y_fun_jac_ut_xt.c
OCP_SRC+= lat_cost/lat_cost_y_hess.c
OCP_SRC+= lat_cost/lat_cost_y_e_fun.c
OCP_SRC+= lat_cost/lat_cost_y_e_fun_jac_ut_xt.c
OCP_SRC+= lat_cost/lat_cost_y_e_hess.c
OCP_SRC+= acados_solver_lat.c
OCP_OBJ := $(OCP_SRC:.c=.o)
# for sim solver
SIM_SRC= acados_sim_solver_lat.c
SIM_OBJ := $(SIM_SRC:.c=.o)
# for target example
EX_SRC= main_lat.c
EX_OBJ := $(EX_SRC:.c=.o)
EX_EXE := $(EX_SRC:.c=)
# for target example_sim
EX_SIM_SRC= main_sim_lat.c
EX_SIM_OBJ := $(EX_SIM_SRC:.c=.o)
EX_SIM_EXE := $(EX_SIM_SRC:.c=)
# combine model, sim and ocp object files
OBJ=
OBJ+= $(MODEL_OBJ)
OBJ+= $(SIM_OBJ)
OBJ+= $(OCP_OBJ)
EXTERNAL_DIR=
EXTERNAL_LIB=
INCLUDE_PATH = /data/openpilot/third_party/acados/include
LIB_PATH = /data/openpilot/third_party/acados/lib
# preprocessor flags for make's implicit rules
CPPFLAGS+= -I$(INCLUDE_PATH)
CPPFLAGS+= -I$(INCLUDE_PATH)/acados
CPPFLAGS+= -I$(INCLUDE_PATH)/blasfeo/include
CPPFLAGS+= -I$(INCLUDE_PATH)/hpipm/include
# define the c-compiler flags for make's implicit rules
CFLAGS = -fPIC -std=c99 -O2#-fno-diagnostics-show-line-numbers -g
# # Debugging
# CFLAGS += -g3
# linker flags
LDFLAGS+= -L$(LIB_PATH)
# link to libraries
LDLIBS+= -lacados
LDLIBS+= -lhpipm
LDLIBS+= -lblasfeo
LDLIBS+= -lm
LDLIBS+=
# libraries
LIBACADOS_SOLVER=libacados_solver_lat.so
LIBACADOS_OCP_SOLVER=libacados_ocp_solver_lat.so
LIBACADOS_SIM_SOLVER=lib$(SIM_SRC:.c=.so)
# virtual targets
.PHONY : all clean
#all: clean example_sim example shared_lib
all: clean example_sim example
shared_lib: bundled_shared_lib ocp_shared_lib sim_shared_lib
# some linker targets
example: $(EX_OBJ) $(OBJ)
$(CC) $^ -o $(EX_EXE) $(LDFLAGS) $(LDLIBS)
example_sim: $(EX_SIM_OBJ) $(MODEL_OBJ) $(SIM_OBJ)
$(CC) $^ -o $(EX_SIM_EXE) $(LDFLAGS) $(LDLIBS)
bundled_shared_lib: $(OBJ)
$(CC) -shared $^ -o $(LIBACADOS_SOLVER) $(LDFLAGS) $(LDLIBS)
ocp_shared_lib: $(OCP_OBJ) $(MODEL_OBJ)
$(CC) -shared $^ -o $(LIBACADOS_OCP_SOLVER) $(LDFLAGS) $(LDLIBS) \
-L$(EXTERNAL_DIR) -l$(EXTERNAL_LIB)
sim_shared_lib: $(SIM_OBJ) $(MODEL_OBJ)
$(CC) -shared $^ -o $(LIBACADOS_SIM_SOLVER) $(LDFLAGS) $(LDLIBS)
# Cython targets
ocp_cython_c: ocp_shared_lib
cython \
-o acados_ocp_solver_pyx.c \
-I $(INCLUDE_PATH)/../interfaces/acados_template/acados_template \
$(INCLUDE_PATH)/../interfaces/acados_template/acados_template/acados_ocp_solver_pyx.pyx \
-I /data/openpilot/selfdrive/controls/lib/lateral_mpc_lib/c_generated_code \
ocp_cython_o: ocp_cython_c
$(CC) $(ACADOS_FLAGS) -c -O2 \
-fPIC \
-o acados_ocp_solver_pyx.o \
-I $(INCLUDE_PATH)/blasfeo/include/ \
-I $(INCLUDE_PATH)/hpipm/include/ \
-I $(INCLUDE_PATH) \
-I /usr/local/venv/lib/python3.12/site-packages/numpy/_core/include \
-I /usr/include/python3.12 \
acados_ocp_solver_pyx.c \
ocp_cython: ocp_cython_o
$(CC) $(ACADOS_FLAGS) -shared \
-o acados_ocp_solver_pyx.so \
-Wl,-rpath=$(LIB_PATH) \
acados_ocp_solver_pyx.o \
$(abspath .)/libacados_ocp_solver_lat.so \
$(LDFLAGS) $(LDLIBS)
# Sim Cython targets
sim_cython_c: sim_shared_lib
cython \
-o acados_sim_solver_pyx.c \
-I $(INCLUDE_PATH)/../interfaces/acados_template/acados_template \
$(INCLUDE_PATH)/../interfaces/acados_template/acados_template/acados_sim_solver_pyx.pyx \
-I /data/openpilot/selfdrive/controls/lib/lateral_mpc_lib/c_generated_code \
sim_cython_o: sim_cython_c
$(CC) $(ACADOS_FLAGS) -c -O2 \
-fPIC \
-o acados_sim_solver_pyx.o \
-I $(INCLUDE_PATH)/blasfeo/include/ \
-I $(INCLUDE_PATH)/hpipm/include/ \
-I $(INCLUDE_PATH) \
-I /usr/local/venv/lib/python3.12/site-packages/numpy/_core/include \
-I /usr/include/python3.12 \
acados_sim_solver_pyx.c \
sim_cython: sim_cython_o
$(CC) $(ACADOS_FLAGS) -shared \
-o acados_sim_solver_pyx.so \
-Wl,-rpath=$(LIB_PATH) \
acados_sim_solver_pyx.o \
$(abspath .)/libacados_sim_solver_lat.so \
$(LDFLAGS) $(LDLIBS)
clean:
$(RM) $(OBJ) $(EX_OBJ) $(EX_SIM_OBJ)
$(RM) $(LIBACADOS_SOLVER) $(LIBACADOS_OCP_SOLVER) $(LIBACADOS_SIM_SOLVER)
$(RM) $(EX_EXE) $(EX_SIM_EXE)
clean_ocp_shared_lib:
$(RM) $(LIBACADOS_OCP_SOLVER)
$(RM) $(OCP_OBJ)
clean_ocp_cython:
$(RM) libacados_ocp_solver_lat.so
$(RM) acados_solver_lat.o
$(RM) acados_ocp_solver_pyx.so
$(RM) acados_ocp_solver_pyx.o
clean_sim_cython:
$(RM) libacados_sim_solver_lat.so
$(RM) acados_sim_solver_lat.o
$(RM) acados_sim_solver_pyx.so
$(RM) acados_sim_solver_pyx.o

View File

@@ -0,0 +1,101 @@
/*
* Copyright (c) The acados authors.
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef ACADOS_SIM_lat_H_
#define ACADOS_SIM_lat_H_
#include "acados_c/sim_interface.h"
#include "acados_c/external_function_interface.h"
#define LAT_NX 4
#define LAT_NZ 0
#define LAT_NU 1
#define LAT_NP 2
#ifdef __cplusplus
extern "C" {
#endif
// ** capsule for solver data **
typedef struct sim_solver_capsule
{
// acados objects
sim_in *acados_sim_in;
sim_out *acados_sim_out;
sim_solver *acados_sim_solver;
sim_opts *acados_sim_opts;
sim_config *acados_sim_config;
void *acados_sim_dims;
/* external functions */
// ERK
external_function_param_casadi * sim_forw_vde_casadi;
external_function_param_casadi * sim_vde_adj_casadi;
external_function_param_casadi * sim_expl_ode_fun_casadi;
external_function_param_casadi * sim_expl_ode_hess;
// IRK
external_function_param_casadi * sim_impl_dae_fun;
external_function_param_casadi * sim_impl_dae_fun_jac_x_xdot_z;
external_function_param_casadi * sim_impl_dae_jac_x_xdot_u_z;
external_function_param_casadi * sim_impl_dae_hess;
// GNSF
external_function_param_casadi * sim_gnsf_phi_fun;
external_function_param_casadi * sim_gnsf_phi_fun_jac_y;
external_function_param_casadi * sim_gnsf_phi_jac_y_uhat;
external_function_param_casadi * sim_gnsf_f_lo_jac_x1_x1dot_u_z;
external_function_param_casadi * sim_gnsf_get_matrices_fun;
} sim_solver_capsule;
ACADOS_SYMBOL_EXPORT int lat_acados_sim_create(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT int lat_acados_sim_solve(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT int lat_acados_sim_free(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT int lat_acados_sim_update_params(sim_solver_capsule *capsule, double *value, int np);
ACADOS_SYMBOL_EXPORT sim_config * lat_acados_get_sim_config(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT sim_in * lat_acados_get_sim_in(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT sim_out * lat_acados_get_sim_out(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT void * lat_acados_get_sim_dims(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT sim_opts * lat_acados_get_sim_opts(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT sim_solver * lat_acados_get_sim_solver(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT sim_solver_capsule * lat_acados_sim_solver_create_capsule(void);
ACADOS_SYMBOL_EXPORT int lat_acados_sim_solver_free_capsule(sim_solver_capsule *capsule);
#ifdef __cplusplus
}
#endif
#endif // ACADOS_SIM_lat_H_

View File

@@ -0,0 +1,62 @@
#
# Copyright (c) The acados authors.
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
cimport acados_solver_common
cdef extern from "acados_solver_lat.h":
ctypedef struct nlp_solver_capsule "lat_solver_capsule":
pass
nlp_solver_capsule * acados_create_capsule "lat_acados_create_capsule"()
int acados_free_capsule "lat_acados_free_capsule"(nlp_solver_capsule *capsule)
int acados_create "lat_acados_create"(nlp_solver_capsule * capsule)
int acados_create_with_discretization "lat_acados_create_with_discretization"(nlp_solver_capsule * capsule, int n_time_steps, double* new_time_steps)
int acados_update_time_steps "lat_acados_update_time_steps"(nlp_solver_capsule * capsule, int N, double* new_time_steps)
int acados_update_qp_solver_cond_N "lat_acados_update_qp_solver_cond_N"(nlp_solver_capsule * capsule, int qp_solver_cond_N)
int acados_update_params "lat_acados_update_params"(nlp_solver_capsule * capsule, int stage, double *value, int np_)
int acados_update_params_sparse "lat_acados_update_params_sparse"(nlp_solver_capsule * capsule, int stage, int *idx, double *p, int n_update)
int acados_solve "lat_acados_solve"(nlp_solver_capsule * capsule)
int acados_reset "lat_acados_reset"(nlp_solver_capsule * capsule, int reset_qp_solver_mem)
int acados_free "lat_acados_free"(nlp_solver_capsule * capsule)
void acados_print_stats "lat_acados_print_stats"(nlp_solver_capsule * capsule)
int acados_custom_update "lat_acados_custom_update"(nlp_solver_capsule* capsule, double * data, int data_len)
acados_solver_common.ocp_nlp_in *acados_get_nlp_in "lat_acados_get_nlp_in"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_out *acados_get_nlp_out "lat_acados_get_nlp_out"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_out *acados_get_sens_out "lat_acados_get_sens_out"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_solver *acados_get_nlp_solver "lat_acados_get_nlp_solver"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_config *acados_get_nlp_config "lat_acados_get_nlp_config"(nlp_solver_capsule * capsule)
void *acados_get_nlp_opts "lat_acados_get_nlp_opts"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_dims *acados_get_nlp_dims "lat_acados_get_nlp_dims"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_plan *acados_get_nlp_plan "lat_acados_get_nlp_plan"(nlp_solver_capsule * capsule)

View File

@@ -0,0 +1,170 @@
/*
* Copyright (c) The acados authors.
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef ACADOS_SOLVER_lat_H_
#define ACADOS_SOLVER_lat_H_
#include "acados/utils/types.h"
#include "acados_c/ocp_nlp_interface.h"
#include "acados_c/external_function_interface.h"
#define LAT_NX 4
#define LAT_NZ 0
#define LAT_NU 1
#define LAT_NP 2
#define LAT_NBX 2
#define LAT_NBX0 4
#define LAT_NBU 0
#define LAT_NSBX 0
#define LAT_NSBU 0
#define LAT_NSH 0
#define LAT_NSG 0
#define LAT_NSPHI 0
#define LAT_NSHN 0
#define LAT_NSGN 0
#define LAT_NSPHIN 0
#define LAT_NSBXN 0
#define LAT_NS 0
#define LAT_NSN 0
#define LAT_NG 0
#define LAT_NBXN 0
#define LAT_NGN 0
#define LAT_NY0 5
#define LAT_NY 5
#define LAT_NYN 3
#define LAT_N 32
#define LAT_NH 0
#define LAT_NPHI 0
#define LAT_NHN 0
#define LAT_NPHIN 0
#define LAT_NR 0
#ifdef __cplusplus
extern "C" {
#endif
// ** capsule for solver data **
typedef struct lat_solver_capsule
{
// acados objects
ocp_nlp_in *nlp_in;
ocp_nlp_out *nlp_out;
ocp_nlp_out *sens_out;
ocp_nlp_solver *nlp_solver;
void *nlp_opts;
ocp_nlp_plan_t *nlp_solver_plan;
ocp_nlp_config *nlp_config;
ocp_nlp_dims *nlp_dims;
// number of expected runtime parameters
unsigned int nlp_np;
/* external functions */
// dynamics
external_function_param_casadi *forw_vde_casadi;
external_function_param_casadi *expl_ode_fun;
// cost
external_function_param_casadi *cost_y_fun;
external_function_param_casadi *cost_y_fun_jac_ut_xt;
external_function_param_casadi *cost_y_hess;
external_function_param_casadi cost_y_0_fun;
external_function_param_casadi cost_y_0_fun_jac_ut_xt;
external_function_param_casadi cost_y_0_hess;
external_function_param_casadi cost_y_e_fun;
external_function_param_casadi cost_y_e_fun_jac_ut_xt;
external_function_param_casadi cost_y_e_hess;
// constraints
} lat_solver_capsule;
ACADOS_SYMBOL_EXPORT lat_solver_capsule * lat_acados_create_capsule(void);
ACADOS_SYMBOL_EXPORT int lat_acados_free_capsule(lat_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT int lat_acados_create(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT int lat_acados_reset(lat_solver_capsule* capsule, int reset_qp_solver_mem);
/**
* Generic version of lat_acados_create which allows to use a different number of shooting intervals than
* the number used for code generation. If new_time_steps=NULL and n_time_steps matches the number used for code
* generation, the time-steps from code generation is used.
*/
ACADOS_SYMBOL_EXPORT int lat_acados_create_with_discretization(lat_solver_capsule * capsule, int n_time_steps, double* new_time_steps);
/**
* Update the time step vector. Number N must be identical to the currently set number of shooting nodes in the
* nlp_solver_plan. Returns 0 if no error occurred and a otherwise a value other than 0.
*/
ACADOS_SYMBOL_EXPORT int lat_acados_update_time_steps(lat_solver_capsule * capsule, int N, double* new_time_steps);
/**
* This function is used for updating an already initialized solver with a different number of qp_cond_N.
*/
ACADOS_SYMBOL_EXPORT int lat_acados_update_qp_solver_cond_N(lat_solver_capsule * capsule, int qp_solver_cond_N);
ACADOS_SYMBOL_EXPORT int lat_acados_update_params(lat_solver_capsule * capsule, int stage, double *value, int np);
ACADOS_SYMBOL_EXPORT int lat_acados_update_params_sparse(lat_solver_capsule * capsule, int stage, int *idx, double *p, int n_update);
ACADOS_SYMBOL_EXPORT int lat_acados_solve(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT int lat_acados_free(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT void lat_acados_print_stats(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT int lat_acados_custom_update(lat_solver_capsule* capsule, double* data, int data_len);
ACADOS_SYMBOL_EXPORT ocp_nlp_in *lat_acados_get_nlp_in(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_out *lat_acados_get_nlp_out(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_out *lat_acados_get_sens_out(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_solver *lat_acados_get_nlp_solver(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_config *lat_acados_get_nlp_config(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT void *lat_acados_get_nlp_opts(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_dims *lat_acados_get_nlp_dims(lat_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_plan_t *lat_acados_get_nlp_plan(lat_solver_capsule * capsule);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // ACADOS_SOLVER_lat_H_

View File

@@ -0,0 +1,50 @@
/*
* Copyright (c) The acados authors.
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef lat_CONSTRAINTS
#define lat_CONSTRAINTS
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // lat_CONSTRAINTS

View File

@@ -0,0 +1,119 @@
/*
* Copyright (c) The acados authors.
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef lat_COST
#define lat_COST
#ifdef __cplusplus
extern "C" {
#endif
// Cost at initial shooting node
int lat_cost_y_0_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_cost_y_0_fun_work(int *, int *, int *, int *);
const int *lat_cost_y_0_fun_sparsity_in(int);
const int *lat_cost_y_0_fun_sparsity_out(int);
int lat_cost_y_0_fun_n_in(void);
int lat_cost_y_0_fun_n_out(void);
int lat_cost_y_0_fun_jac_ut_xt(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_cost_y_0_fun_jac_ut_xt_work(int *, int *, int *, int *);
const int *lat_cost_y_0_fun_jac_ut_xt_sparsity_in(int);
const int *lat_cost_y_0_fun_jac_ut_xt_sparsity_out(int);
int lat_cost_y_0_fun_jac_ut_xt_n_in(void);
int lat_cost_y_0_fun_jac_ut_xt_n_out(void);
int lat_cost_y_0_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_cost_y_0_hess_work(int *, int *, int *, int *);
const int *lat_cost_y_0_hess_sparsity_in(int);
const int *lat_cost_y_0_hess_sparsity_out(int);
int lat_cost_y_0_hess_n_in(void);
int lat_cost_y_0_hess_n_out(void);
// Cost at path shooting node
int lat_cost_y_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_cost_y_fun_work(int *, int *, int *, int *);
const int *lat_cost_y_fun_sparsity_in(int);
const int *lat_cost_y_fun_sparsity_out(int);
int lat_cost_y_fun_n_in(void);
int lat_cost_y_fun_n_out(void);
int lat_cost_y_fun_jac_ut_xt(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_cost_y_fun_jac_ut_xt_work(int *, int *, int *, int *);
const int *lat_cost_y_fun_jac_ut_xt_sparsity_in(int);
const int *lat_cost_y_fun_jac_ut_xt_sparsity_out(int);
int lat_cost_y_fun_jac_ut_xt_n_in(void);
int lat_cost_y_fun_jac_ut_xt_n_out(void);
int lat_cost_y_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_cost_y_hess_work(int *, int *, int *, int *);
const int *lat_cost_y_hess_sparsity_in(int);
const int *lat_cost_y_hess_sparsity_out(int);
int lat_cost_y_hess_n_in(void);
int lat_cost_y_hess_n_out(void);
// Cost at terminal shooting node
int lat_cost_y_e_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_cost_y_e_fun_work(int *, int *, int *, int *);
const int *lat_cost_y_e_fun_sparsity_in(int);
const int *lat_cost_y_e_fun_sparsity_out(int);
int lat_cost_y_e_fun_n_in(void);
int lat_cost_y_e_fun_n_out(void);
int lat_cost_y_e_fun_jac_ut_xt(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_cost_y_e_fun_jac_ut_xt_work(int *, int *, int *, int *);
const int *lat_cost_y_e_fun_jac_ut_xt_sparsity_in(int);
const int *lat_cost_y_e_fun_jac_ut_xt_sparsity_out(int);
int lat_cost_y_e_fun_jac_ut_xt_n_in(void);
int lat_cost_y_e_fun_jac_ut_xt_n_out(void);
int lat_cost_y_e_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_cost_y_e_hess_work(int *, int *, int *, int *);
const int *lat_cost_y_e_hess_sparsity_in(int);
const int *lat_cost_y_e_hess_sparsity_out(int);
int lat_cost_y_e_hess_n_in(void);
int lat_cost_y_e_hess_n_out(void);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // lat_COST

View File

@@ -0,0 +1,71 @@
/*
* Copyright (c) The acados authors.
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef lat_MODEL
#define lat_MODEL
#ifdef __cplusplus
extern "C" {
#endif
/* explicit ODE */
// explicit ODE
int lat_expl_ode_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_expl_ode_fun_work(int *, int *, int *, int *);
const int *lat_expl_ode_fun_sparsity_in(int);
const int *lat_expl_ode_fun_sparsity_out(int);
int lat_expl_ode_fun_n_in(void);
int lat_expl_ode_fun_n_out(void);
// explicit forward VDE
int lat_expl_vde_forw(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_expl_vde_forw_work(int *, int *, int *, int *);
const int *lat_expl_vde_forw_sparsity_in(int);
const int *lat_expl_vde_forw_sparsity_out(int);
int lat_expl_vde_forw_n_in(void);
int lat_expl_vde_forw_n_out(void);
// explicit adjoint VDE
int lat_expl_vde_adj(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int lat_expl_vde_adj_work(int *, int *, int *, int *);
const int *lat_expl_vde_adj_sparsity_in(int);
const int *lat_expl_vde_adj_sparsity_out(int);
int lat_expl_vde_adj_n_in(void);
int lat_expl_vde_adj_n_out(void);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // lat_MODEL

View File

@@ -0,0 +1,199 @@
#!/usr/bin/env python3
import os
import time
import numpy as np
from casadi import SX, vertcat, sin, cos
# WARNING: imports outside of constants will not trigger a rebuild
from openpilot.selfdrive.modeld.constants import ModelConstants
if __name__ == '__main__': # generating code
from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
else:
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverCython
LAT_MPC_DIR = os.path.dirname(os.path.abspath(__file__))
EXPORT_DIR = os.path.join(LAT_MPC_DIR, "c_generated_code")
JSON_FILE = os.path.join(LAT_MPC_DIR, "acados_ocp_lat.json")
X_DIM = 4
P_DIM = 2
COST_E_DIM = 3
COST_DIM = COST_E_DIM + 2
SPEED_OFFSET = 10.0
MODEL_NAME = 'lat'
ACADOS_SOLVER_TYPE = 'SQP_RTI'
N = 32
def gen_lat_model():
model = AcadosModel()
model.name = MODEL_NAME
# set up states & controls
x_ego = SX.sym('x_ego')
y_ego = SX.sym('y_ego')
psi_ego = SX.sym('psi_ego')
psi_rate_ego = SX.sym('psi_rate_ego')
model.x = vertcat(x_ego, y_ego, psi_ego, psi_rate_ego)
# parameters
v_ego = SX.sym('v_ego')
rotation_radius = SX.sym('rotation_radius')
model.p = vertcat(v_ego, rotation_radius)
# controls
psi_accel_ego = SX.sym('psi_accel_ego')
model.u = vertcat(psi_accel_ego)
# xdot
x_ego_dot = SX.sym('x_ego_dot')
y_ego_dot = SX.sym('y_ego_dot')
psi_ego_dot = SX.sym('psi_ego_dot')
psi_rate_ego_dot = SX.sym('psi_rate_ego_dot')
model.xdot = vertcat(x_ego_dot, y_ego_dot, psi_ego_dot, psi_rate_ego_dot)
# dynamics model
f_expl = vertcat(v_ego * cos(psi_ego) - rotation_radius * sin(psi_ego) * psi_rate_ego,
v_ego * sin(psi_ego) + rotation_radius * cos(psi_ego) * psi_rate_ego,
psi_rate_ego,
psi_accel_ego)
model.f_impl_expr = model.xdot - f_expl
model.f_expl_expr = f_expl
return model
def gen_lat_ocp():
ocp = AcadosOcp()
ocp.model = gen_lat_model()
Tf = np.array(ModelConstants.T_IDXS)[N]
# set dimensions
ocp.dims.N = N
# set cost module
ocp.cost.cost_type = 'NONLINEAR_LS'
ocp.cost.cost_type_e = 'NONLINEAR_LS'
Q = np.diag(np.zeros(COST_E_DIM))
QR = np.diag(np.zeros(COST_DIM))
ocp.cost.W = QR
ocp.cost.W_e = Q
y_ego, psi_ego, psi_rate_ego = ocp.model.x[1], ocp.model.x[2], ocp.model.x[3]
psi_rate_ego_dot = ocp.model.u[0]
v_ego = ocp.model.p[0]
ocp.parameter_values = np.zeros((P_DIM, ))
ocp.cost.yref = np.zeros((COST_DIM, ))
ocp.cost.yref_e = np.zeros((COST_E_DIM, ))
# Add offset to smooth out low speed control
# TODO unclear if this right solution long term
v_ego_offset = v_ego + SPEED_OFFSET
# TODO there are two costs on psi_rate_ego_dot, one
# is correlated to jerk the other to steering wheel movement
# the steering wheel movement cost is added to prevent excessive
# wheel movements
ocp.model.cost_y_expr = vertcat(y_ego,
v_ego_offset * psi_ego,
v_ego_offset * psi_rate_ego,
v_ego_offset * psi_rate_ego_dot,
psi_rate_ego_dot / (v_ego + 0.1))
ocp.model.cost_y_expr_e = vertcat(y_ego,
v_ego_offset * psi_ego,
v_ego_offset * psi_rate_ego)
# set constraints
ocp.constraints.constr_type = 'BGH'
ocp.constraints.idxbx = np.array([2,3])
ocp.constraints.ubx = np.array([np.radians(90), np.radians(50)])
ocp.constraints.lbx = np.array([-np.radians(90), -np.radians(50)])
x0 = np.zeros((X_DIM,))
ocp.constraints.x0 = x0
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.nlp_solver_type = ACADOS_SOLVER_TYPE
ocp.solver_options.qp_solver_iter_max = 1
ocp.solver_options.qp_solver_cond_N = 1
# set prediction horizon
ocp.solver_options.tf = Tf
ocp.solver_options.shooting_nodes = np.array(ModelConstants.T_IDXS)[:N+1]
ocp.code_export_directory = EXPORT_DIR
return ocp
class LateralMpc:
def __init__(self, x0=None):
if x0 is None:
x0 = np.zeros(X_DIM)
self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
self.reset(x0)
def reset(self, x0=None):
if x0 is None:
x0 = np.zeros(X_DIM)
self.x_sol = np.zeros((N+1, X_DIM))
self.u_sol = np.zeros((N, 1))
self.yref = np.zeros((N+1, COST_DIM))
for i in range(N):
self.solver.cost_set(i, "yref", self.yref[i])
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
# Somehow needed for stable init
for i in range(N+1):
self.solver.set(i, 'x', np.zeros(X_DIM))
self.solver.set(i, 'p', np.zeros(P_DIM))
self.solver.constraints_set(0, "lbx", x0)
self.solver.constraints_set(0, "ubx", x0)
self.solver.solve()
self.solution_status = 0
self.solve_time = 0.0
self.cost = 0
def set_weights(self, path_weight, heading_weight,
lat_accel_weight, lat_jerk_weight,
steering_rate_weight):
W = np.asfortranarray(np.diag([path_weight, heading_weight,
lat_accel_weight, lat_jerk_weight,
steering_rate_weight]))
for i in range(N):
self.solver.cost_set(i, 'W', W)
self.solver.cost_set(N, 'W', W[:COST_E_DIM,:COST_E_DIM])
def run(self, x0, p, y_pts, heading_pts, yaw_rate_pts):
x0_cp = np.copy(x0)
p_cp = np.copy(p)
self.solver.constraints_set(0, "lbx", x0_cp)
self.solver.constraints_set(0, "ubx", x0_cp)
self.yref[:,0] = y_pts
v_ego = p_cp[0, 0]
# rotation_radius = p_cp[1]
self.yref[:,1] = heading_pts * (v_ego + SPEED_OFFSET)
self.yref[:,2] = yaw_rate_pts * (v_ego + SPEED_OFFSET)
for i in range(N):
self.solver.cost_set(i, "yref", self.yref[i])
self.solver.set(i, "p", p_cp[i])
self.solver.set(N, "p", p_cp[N])
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
t = time.monotonic()
self.solution_status = self.solver.solve()
self.solve_time = time.monotonic() - t
for i in range(N+1):
self.x_sol[i] = self.solver.get(i, 'x')
for i in range(N):
self.u_sol[i] = self.solver.get(i, 'u')
self.cost = self.solver.get_cost()
if __name__ == "__main__":
ocp = gen_lat_ocp()
AcadosOcpSolver.generate(ocp, json_file=JSON_FILE)
# AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)

View File

@@ -0,0 +1,347 @@
import time
import numpy as np
from openpilot.common.realtime import DT_MDL
from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED, get_speed_error
# from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
import cereal.messaging as messaging
from cereal import log
from openpilot.common.params import Params
#from openpilot.selfdrive.controls.lib.lane_planner import LanePlanner
from openpilot.selfdrive.controls.lib.lane_planner_2 import LanePlanner
from collections import deque
TRAJECTORY_SIZE = 33
#CAMERA_OFFSET = 0.04
PATH_COST = 1.0
LATERAL_MOTION_COST = 0.11
LATERAL_ACCEL_COST = 0.0
LATERAL_JERK_COST = 0.04
# Extreme steering rate is unpleasant, even
# when it does not cause bad jerk.
# TODO this cost should be lowered when low
# speed lateral control is stable on all cars
STEERING_RATE_COST = 700.0
class LateralPlanner:
def __init__(self, CP, debug=False):
#self.DH = DesireHelper()
# Vehicle model parameters used to calculate lateral movement of car
self.factor1 = CP.wheelbase - CP.centerToFront
self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase * CP.tireStiffnessRear)
self.last_cloudlog_t = 0
self.solution_invalid_cnt = 0
self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.velocity_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.v_plan = np.zeros((TRAJECTORY_SIZE,))
self.x_sol = np.zeros((TRAJECTORY_SIZE, 4), dtype=np.float32)
self.v_ego = MIN_SPEED
self.l_lane_change_prob = 0.0
self.r_lane_change_prob = 0.0
self.debug_mode = debug
self.params = Params()
self.latDebugText = ""
# lane_mode
self.LP = LanePlanner()
self.readParams = 0
self.lanelines_active = False
self.lanelines_active_tmp = False
self.useLaneLineSpeedApply = self.params.get_int("UseLaneLineSpeed")
self.pathOffset = float(self.params.get_int("PathOffset")) * 0.01
self.useLaneLineMode = False
self.plan_a = np.zeros((TRAJECTORY_SIZE, ))
self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
self.plan_yaw_rate = np.zeros((TRAJECTORY_SIZE,))
self.t_idxs = np.arange(TRAJECTORY_SIZE)
self.y_pts = np.zeros((TRAJECTORY_SIZE,))
self.d_path_w_lines_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.lat_mpc = LateralMpc()
self.reset_mpc(np.zeros(4))
self.curve_speed = 0
self.lanemode_possible_count = 0
self.laneless_only = True
def reset_mpc(self, x0=None):
if x0 is None:
x0 = np.zeros(4)
self.x0 = x0
self.lat_mpc.reset(x0=self.x0)
def update(self, sm, carrot):
global LATERAL_ACCEL_COST, LATERAL_JERK_COST, STEERING_RATE_COST
self.readParams -= 1
if self.readParams <= 0:
self.readParams = 100
self.useLaneLineSpeedApply = sm['carState'].useLaneLineSpeed
self.pathOffset = float(self.params.get_int("PathOffset")) * 0.01
self.lateralPathCost = self.params.get_float("LatMpcPathCost") * 0.01
self.lateralMotionCost = self.params.get_float("LatMpcMotionCost") * 0.01
LATERAL_ACCEL_COST = self.params.get_float("LatMpcAccelCost") * 0.01
LATERAL_JERK_COST = self.params.get_float("LatMpcJerkCost") * 0.01
STEERING_RATE_COST = self.params.get_float("LatMpcSteeringRateCost")
# clip speed , lateral planning is not possible at 0 speed
measured_curvature = sm['controlsState'].curvature
v_ego_car = max(sm['carState'].vEgo, MIN_SPEED)
speed_kph = v_ego_car * 3.6
self.v_ego = v_ego_car
self.curve_speed = sm['carrotMan'].vTurnSpeed
# Parse model predictions
md = sm['modelV2']
model_active = False
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
model_active = True
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
self.t_idxs = np.array(md.position.t)
self.plan_yaw = np.array(md.orientation.z)
self.plan_yaw_rate = np.array(md.orientationRate.z)
self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z])
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car)
self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf)
self.v_ego = self.v_plan[0]
self.plan_a = np.array(md.acceleration.x)
if md.velocity.x[-1] < md.velocity.x[0] * 0.7: # TODO: 모델이 감속을 요청하는 경우 속도테이블이 레인모드를 할수 없음. 속도테이블을 새로 만들어야함..
self.lanemode_possible_count = 0
self.laneless_only = True
else:
self.lanemode_possible_count += 1
if self.lanemode_possible_count > int(1/DT_MDL):
self.laneless_only = False
# Parse model predictions
self.LP.parse_model(md)
#lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
#self.DH.update(sm['carState'], md, sm['carControl'].latActive, lane_change_prob, sm)
if self.useLaneLineSpeedApply == 0 or self.laneless_only:
self.useLaneLineMode = False
elif speed_kph >= self.useLaneLineSpeedApply + 2:
self.useLaneLineMode = True
elif speed_kph < self.useLaneLineSpeedApply - 2:
self.useLaneLineMode = False
# Turn off lanes during lane change
#if self.DH.desire == log.Desire.laneChangeRight or self.DH.desire == log.Desire.laneChangeLeft:
if md.meta.desire != log.Desire.none or carrot.atc_active:
self.LP.lane_change_multiplier = 0.0 #md.meta.laneChangeProb
else:
self.LP.lane_change_multiplier = 1.0
# lanelines calculation?
self.LP.lanefull_mode = self.useLaneLineMode
self.LP.lane_width_left = md.meta.laneWidthLeft
self.LP.lane_width_right = md.meta.laneWidthRight
self.LP.curvature = measured_curvature
self.path_xyz, self.lanelines_active = self.LP.get_d_path(sm['carState'], v_ego_car, self.t_idxs, self.path_xyz, self.curve_speed)
if self.lanelines_active:
self.plan_yaw, self.plan_yaw_rate = yaw_from_path_no_scipy(
self.path_xyz, self.v_plan,
smooth_window=5,
clip_rate=2.0,
align_first_yaw=None #md.orientation.z[0] # 초기 정렬
)
self.latDebugText = self.LP.debugText
#self.lanelines_active = True if self.LP.d_prob > 0.3 and self.LP.lanefull_mode else False
self.path_xyz[:, 1] += self.pathOffset
self.lat_mpc.set_weights(self.lateralPathCost, self.lateralMotionCost,
LATERAL_ACCEL_COST, LATERAL_JERK_COST,
STEERING_RATE_COST)
y_pts = self.path_xyz[:LAT_MPC_N+1, 1]
heading_pts = self.plan_yaw[:LAT_MPC_N+1]
yaw_rate_pts = self.plan_yaw_rate[:LAT_MPC_N+1]
self.y_pts = y_pts
assert len(y_pts) == LAT_MPC_N + 1
assert len(heading_pts) == LAT_MPC_N + 1
assert len(yaw_rate_pts) == LAT_MPC_N + 1
lateral_factor = np.clip(self.factor1 - (self.factor2 * self.v_plan**2), 0.0, np.inf)
p = np.column_stack([self.v_plan, lateral_factor])
self.lat_mpc.run(self.x0,
p,
y_pts,
heading_pts,
yaw_rate_pts)
# init state for next iteration
# mpc.u_sol is the desired second derivative of psi given x0 curv state.
# with x0[3] = measured_yaw_rate, this would be the actual desired yaw rate.
# instead, interpolate x_sol so that x0[3] is the desired yaw rate for lat_control.
self.x0[3] = np.interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3])
# Check for infeasible MPC solution
mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any()
t = time.monotonic()
if mpc_nans or self.lat_mpc.solution_status != 0:
self.reset_mpc()
self.x0[3] = measured_curvature * self.v_ego
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning("Lateral mpc - nan: True")
if self.lat_mpc.cost > 1e6 or mpc_nans:
self.solution_invalid_cnt += 1
else:
self.solution_invalid_cnt = 0
self.x_sol = self.lat_mpc.x_sol
def publish(self, sm, pm, carrot):
plan_solution_valid = self.solution_invalid_cnt < 2
plan_send = messaging.new_message('lateralPlan')
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
if not plan_send.valid:
#print("lateralPlan_valid=", sm.valid)
#print("lateralPlan_alive=", sm.alive)
#print("lateralPlan_freq_ok=", sm.freq_ok)
#print(sm.avg_freq)
pass
lateralPlan = plan_send.lateralPlan
lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
lateralPlan.dPathPoints = self.y_pts.tolist()
lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
lateralPlan.distances = self.lat_mpc.x_sol[0:CONTROL_N, 0].tolist()
v_div = np.maximum(self.v_plan[:CONTROL_N], 6.0)
if len(self.v_plan) == TRAJECTORY_SIZE:
lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3] / v_div).tolist()
else:
lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3] / self.v_ego).tolist()
v_div2 = max(self.v_ego, 6.0)
lateralPlan.curvatureRates = [float(x.item() / v_div2) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
lateralPlan.solverExecutionTime = self.lat_mpc.solve_time
if self.debug_mode:
lateralPlan.solverCost = self.lat_mpc.cost
lateralPlan.solverState = log.LateralPlan.SolverState.new_message()
lateralPlan.solverState.x = self.lat_mpc.x_sol.tolist()
lateralPlan.solverState.u = self.lat_mpc.u_sol.flatten().tolist()
#lateralPlan.desire = self.DH.desire
lateralPlan.useLaneLines = self.lanelines_active
#lateralPlan.laneChangeState = self.DH.lane_change_state
#lateralPlan.laneChangeDirection = self.DH.lane_change_direction
lateralPlan.laneWidth = float(self.LP.lane_width)
#plan_send.lateralPlan.dPathWLinesX = [float(x) for x in self.d_path_w_lines_xyz[:, 0]]
#plan_send.lateralPlan.dPathWLinesY = [float(y) for y in self.d_path_w_lines_xyz[:, 1]]
#lateralPlan.laneWidthLeft = float(self.DH.lane_width_left)
#lateralPlan.laneWidthRight = float(self.DH.lane_width_right)
lateralPlan.position.x = self.x_sol[:, 0].tolist()
lateralPlan.position.y = self.x_sol[:, 1].tolist()
lateralPlan.position.z = self.path_xyz[:, 2].tolist()
#lateralPlan.distances = self.lat_mpc.x_sol[0:CONTROL_N, 0].tolist()
self.x_sol = self.lat_mpc.x_sol
debugText = (
f"{'lanemode' if self.lanelines_active else 'laneless'} | " +
f"{self.LP.lane_width_left:.1f}m | " +
f"{self.LP.lane_width:.1f}m | " +
f"{self.LP.lane_width_right:.1f}m | " +
f"{f'offset={self.LP.offset_total * 100.0:.1f}cm turn={np.clip(self.curve_speed, -200, 200):.0f}km/h' if self.lanelines_active else ''}"
)
lateralPlan.latDebugText = debugText
#lateralPlan.latDebugText = self.latDebugText
#lateralPlan.laneWidthLeft = float(self.DH.lane_width_left)
#lateralPlan.laneWidthRight = float(self.DH.lane_width_right)
#lateralPlan.distanceToRoadEdgeLeft = float(self.DH.distance_to_road_edge_left)
#lateralPlan.distanceToRoadEdgeRight = float(self.DH.distance_to_road_edge_right)
pm.send('lateralPlan', plan_send)
def smooth_moving_avg(arr, window=5):
if window < 2:
return arr
if window % 2 == 0:
window += 1
pad = window // 2
arr_pad = np.pad(arr, (pad, pad), mode='edge')
kernel = np.ones(window) / window
return np.convolve(arr_pad, kernel, mode='same')[pad:-pad]
def yaw_from_path_no_scipy(path_xyz, v_plan, smooth_window=5,
clip_rate=2.0, align_first_yaw=None):
v0 = float(np.asarray(v_plan)[0]) if len(v_plan) else 0.0
# 저속(≤6 m/s)에서는 창을 크게
if v0 <= 6.0:
smooth_window = max(smooth_window, 9) # 9~11 권장
N = path_xyz.shape[0]
x = path_xyz[:, 0].astype(float)
y = path_xyz[:, 1].astype(float)
if N < 5:
return np.zeros(N, np.float32), np.zeros(N, np.float32)
# 1) s(호길이) 계산
dx = np.diff(x)
dy = np.diff(y)
ds_seg = np.sqrt(dx*dx + dy*dy)
ds_seg[ds_seg < 0.05] = 0.05
s = np.zeros(N, float)
s[1:] = np.cumsum(ds_seg)
if s[-1] < 0.5: # 총 호길이 < 0.5m면 미분 결과 의미가 약함
return np.zeros(N, np.float32), np.zeros(N, np.float32)
# 2) smoothing (이동평균)
x_smooth = smooth_moving_avg(x, smooth_window)
y_smooth = smooth_moving_avg(y, smooth_window)
# 3) 1·2차 도함수(s축 미분)
dx_ds = np.gradient(x_smooth, s)
dy_ds = np.gradient(y_smooth, s)
d2x_ds2 = np.gradient(dx_ds, s)
d2y_ds2 = np.gradient(dy_ds, s)
# 4) yaw = atan2(dy/ds, dx/ds)
yaw = np.unwrap(np.arctan2(dy_ds, dx_ds))
# 5) 곡률 kappa = ...
denom = (dx_ds*dx_ds + dy_ds*dy_ds)**1.5
denom[denom < 1e-9] = 1e-9
kappa = (dx_ds * d2y_ds2 - dy_ds * d2x_ds2) / denom
# 6) yaw_rate = kappa * v
v = np.asarray(v_plan, float)
yaw_rate = kappa * v
if v0 <= 6.0:
# 이동평균으로 미세 요동 감쇄(창 5~7)
yaw_rate = smooth_moving_avg(yaw_rate, window=7)
# 7) 초기 yaw 정렬 (선택)
if align_first_yaw is not None:
bias = yaw[0] - float(align_first_yaw)
yaw = yaw - bias
# 8) 안정화
yaw = np.where(np.isfinite(yaw), yaw, 0.0)
yaw_rate = np.where(np.isfinite(yaw_rate), yaw_rate, 0.0)
yaw_rate = np.clip(yaw_rate, -abs(clip_rate), abs(clip_rate))
return yaw.astype(np.float32), yaw_rate.astype(np.float32)

View File

@@ -0,0 +1,41 @@
from cereal import log
from openpilot.common.realtime import DT_CTRL
from openpilot.common.conversions import Conversions as CV
CAMERA_OFFSET = 0.04
LDW_MIN_SPEED = 31 * CV.MPH_TO_MS
LANE_DEPARTURE_THRESHOLD = 0.1
class LaneDepartureWarning:
def __init__(self):
self.left = False
self.right = False
self.last_blinker_frame = 0
def update(self, frame, modelV2, CS, CC):
if CS.leftBlinker or CS.rightBlinker:
self.last_blinker_frame = frame
recent_blinker = (frame - self.last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown
ldw_allowed = CS.vEgo > LDW_MIN_SPEED and not recent_blinker and not CC.latActive
desire_prediction = modelV2.meta.desirePrediction
if len(desire_prediction) and ldw_allowed:
right_lane_visible = modelV2.laneLineProbs[2] > 0.5
left_lane_visible = modelV2.laneLineProbs[1] > 0.5
l_lane_change_prob = desire_prediction[log.Desire.laneChangeLeft]
r_lane_change_prob = desire_prediction[log.Desire.laneChangeRight]
lane_lines = modelV2.laneLines
l_lane_close = left_lane_visible and (lane_lines[1].y[0] > -(1.08 + CAMERA_OFFSET))
r_lane_close = right_lane_visible and (lane_lines[2].y[0] < (1.08 - CAMERA_OFFSET))
self.left = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close)
self.right = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close)
else:
self.left, self.right = False, False
@property
def warning(self) -> bool:
return bool(self.left or self.right)

View File

@@ -0,0 +1,136 @@
import numpy as np
from cereal import car
from openpilot.common.realtime import DT_CTRL
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N
from openpilot.common.pid import PIDController
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.common.params import Params
CONTROL_N_T_IDX = ModelConstants.T_IDXS[:CONTROL_N]
LongCtrlState = car.CarControl.Actuators.LongControlState
def long_control_state_trans(CP, active, long_control_state, v_ego,
should_stop, brake_pressed, cruise_standstill, a_ego, stopping_accel, radarState):
stopping_condition = should_stop
starting_condition = (not should_stop and
not cruise_standstill and
not brake_pressed)
started_condition = v_ego > CP.vEgoStarting
if not active:
long_control_state = LongCtrlState.off
else:
if long_control_state == LongCtrlState.off:
if not starting_condition:
long_control_state = LongCtrlState.stopping
else:
if starting_condition and CP.startingState:
long_control_state = LongCtrlState.starting
else:
long_control_state = LongCtrlState.pid
elif long_control_state == LongCtrlState.stopping:
if starting_condition and CP.startingState:
long_control_state = LongCtrlState.starting
elif starting_condition:
long_control_state = LongCtrlState.pid
elif long_control_state in [LongCtrlState.starting, LongCtrlState.pid]:
if stopping_condition:
stopping_accel = stopping_accel if stopping_accel < 0.0 else -0.5
leadOne = radarState.leadOne
fcw_stop = leadOne.status and leadOne.dRel < 4.0
if a_ego > stopping_accel or fcw_stop: # and v_ego < 1.0:
long_control_state = LongCtrlState.stopping
if long_control_state == LongCtrlState.starting:
long_control_state = LongCtrlState.stopping
elif started_condition:
long_control_state = LongCtrlState.pid
return long_control_state
class LongControl:
def __init__(self, CP):
self.CP = CP
self.long_control_state = LongCtrlState.off
self.pid = PIDController((CP.longitudinalTuning.kpBP, CP.longitudinalTuning.kpV),
(CP.longitudinalTuning.kiBP, CP.longitudinalTuning.kiV),
k_f=CP.longitudinalTuning.kf, rate=1 / DT_CTRL)
self.last_output_accel = 0.0
self.params = Params()
self.readParamCount = 0
self.stopping_accel = 0
self.j_lead = 0.0
self.use_accel_pid = False
if CP.brand == "toyota":
self.use_accel_pid = True
def reset(self):
self.pid.reset()
def update(self, active, CS, long_plan, accel_limits, t_since_plan, radarState):
soft_hold_active = CS.softHoldActive > 0
a_target_ff = long_plan.aTarget
v_target_now = long_plan.vTargetNow
j_target_now = long_plan.jTargetNow
should_stop = long_plan.shouldStop
self.readParamCount += 1
if self.readParamCount >= 100:
self.readParamCount = 0
self.stopping_accel = self.params.get_float("StoppingAccel") * 0.01
elif self.readParamCount == 10:
if len(self.CP.longitudinalTuning.kpBP) == 1 and len(self.CP.longitudinalTuning.kiBP)==1:
longitudinalTuningKpV = self.params.get_float("LongTuningKpV") * 0.01
longitudinalTuningKiV = self.params.get_float("LongTuningKiV") * 0.001
self.pid._k_p = (self.CP.longitudinalTuning.kpBP, [longitudinalTuningKpV])
self.pid._k_i = (self.CP.longitudinalTuning.kiBP, [longitudinalTuningKiV])
self.pid._k_f = self.params.get_float("LongTuningKf") * 0.01
"""Update longitudinal control. This updates the state machine and runs a PID loop"""
self.pid.neg_limit = accel_limits[0]
self.pid.pos_limit = accel_limits[1]
self.long_control_state = long_control_state_trans(self.CP, active, self.long_control_state, CS.vEgo,
should_stop, CS.brakePressed,
CS.cruiseState.standstill, CS.aEgo, self.stopping_accel, radarState)
if active and soft_hold_active:
self.long_control_state = LongCtrlState.stopping
if self.long_control_state == LongCtrlState.off:
self.reset()
output_accel = 0.
elif self.long_control_state == LongCtrlState.stopping:
output_accel = self.last_output_accel
if soft_hold_active:
output_accel = self.CP.stopAccel
stopAccel = self.stopping_accel if self.stopping_accel < 0.0 else self.CP.stopAccel
if output_accel > stopAccel:
output_accel = min(output_accel, 0.0)
output_accel -= self.CP.stoppingDecelRate * DT_CTRL
self.reset()
elif self.long_control_state == LongCtrlState.starting:
output_accel = self.CP.startAccel
self.reset()
else: # LongCtrlState.pid
if self.use_accel_pid:
error = a_target_ff - CS.aEgo
else:
error = v_target_now - CS.vEgo
output_accel = self.pid.update(error, speed=CS.vEgo,
feedforward=a_target_ff)
self.last_output_accel = np.clip(output_accel, accel_limits[0], accel_limits[1])
return self.last_output_accel, a_target_ff, j_target_now

View File

@@ -0,0 +1,526 @@
{
"acados_include_path": "/data/openpilot/third_party/acados/include",
"acados_lib_path": "/data/openpilot/third_party/acados/lib",
"code_export_directory": "/data/openpilot/selfdrive/controls/lib/longitudinal_mpc_lib/c_generated_code",
"constraints": {
"C": [],
"C_e": [],
"D": [],
"constr_type": "BGH",
"constr_type_e": "BGH",
"idxbu": [],
"idxbx": [],
"idxbx_0": [
0,
1,
2
],
"idxbx_e": [],
"idxbxe_0": [
0,
1,
2
],
"idxsbu": [],
"idxsbx": [],
"idxsbx_e": [],
"idxsg": [],
"idxsg_e": [],
"idxsh": [
0,
1,
2,
3
],
"idxsh_e": [],
"idxsphi": [],
"idxsphi_e": [],
"lbu": [],
"lbx": [],
"lbx_0": [
0.0,
0.0,
0.0
],
"lbx_e": [],
"lg": [],
"lg_e": [],
"lh": [
0.0,
0.0,
0.0,
0.0
],
"lh_e": [],
"lphi": [],
"lphi_e": [],
"lsbu": [],
"lsbx": [],
"lsbx_e": [],
"lsg": [],
"lsg_e": [],
"lsh": [
0.0,
0.0,
0.0,
0.0
],
"lsh_e": [],
"lsphi": [],
"lsphi_e": [],
"ubu": [],
"ubx": [],
"ubx_0": [
0.0,
0.0,
0.0
],
"ubx_e": [],
"ug": [],
"ug_e": [],
"uh": [
10000.0,
10000.0,
10000.0,
10000.0
],
"uh_e": [],
"uphi": [],
"uphi_e": [],
"usbu": [],
"usbx": [],
"usbx_e": [],
"usg": [],
"usg_e": [],
"ush": [
0.0,
0.0,
0.0,
0.0
],
"ush_e": [],
"usphi": [],
"usphi_e": []
},
"cost": {
"Vu": [],
"Vu_0": [],
"Vx": [],
"Vx_0": [],
"Vx_e": [],
"Vz": [],
"Vz_0": [],
"W": [
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
]
],
"W_0": [
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
]
],
"W_e": [
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
0.0,
0.0
]
],
"Zl": [
0.0,
0.0,
0.0,
0.0
],
"Zl_e": [],
"Zu": [
0.0,
0.0,
0.0,
0.0
],
"Zu_e": [],
"cost_ext_fun_type": "casadi",
"cost_ext_fun_type_0": "casadi",
"cost_ext_fun_type_e": "casadi",
"cost_type": "NONLINEAR_LS",
"cost_type_0": "NONLINEAR_LS",
"cost_type_e": "NONLINEAR_LS",
"yref": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"yref_0": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0
],
"yref_e": [
0.0,
0.0,
0.0,
0.0,
0.0
],
"zl": [
0.0,
0.0,
0.0,
0.0
],
"zl_e": [],
"zu": [
0.0,
0.0,
0.0,
0.0
],
"zu_e": []
},
"cython_include_dirs": [
"/usr/local/venv/lib/python3.12/site-packages/numpy/_core/include",
"/usr/include/python3.12"
],
"dims": {
"N": 12,
"nbu": 0,
"nbx": 0,
"nbx_0": 3,
"nbx_e": 0,
"nbxe_0": 3,
"ng": 0,
"ng_e": 0,
"nh": 4,
"nh_e": 0,
"np": 8,
"nphi": 0,
"nphi_e": 0,
"nr": 0,
"nr_e": 0,
"ns": 4,
"ns_e": 0,
"nsbu": 0,
"nsbx": 0,
"nsbx_e": 0,
"nsg": 0,
"nsg_e": 0,
"nsh": 4,
"nsh_e": 0,
"nsphi": 0,
"nsphi_e": 0,
"nu": 1,
"nx": 3,
"ny": 6,
"ny_0": 6,
"ny_e": 5,
"nz": 0
},
"json_file": "/data/openpilot/selfdrive/controls/lib/longitudinal_mpc_lib/acados_ocp_long.json",
"model": {
"con_h_expr": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegiaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaabgpffghgpgegpcaaaaaaaaaaaaaafaaaaaaabgpfngjgogegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaabgpfngbgihchcaaaaaaaaaaaaaaaegeaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaakaaaaaaaihpfpgcgdhehbgdgmgfgegpcaaaaaaaaaaaaaafaaaaaaaihpffghgpgegdaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaacbaaaaaamgfgbgegpfegbgoghgfgchpfggbgdgehpgchegbaaaaaaaaaaaaaaaegbaaaaaaaaaaaaaaaegeaaaaaaaaaaaaaaaeglaaaaaaaaaaaaaaachbaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaaegmcaaaaaaaaaaaaaajgcaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaadgpgngggpgchehpfcgchbglgfgegdaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaamgfgbgegpfehpfggpgmgmgpghhchbaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaadhehpgahpfegjgdhehbgogdgfgegbaaaaaaaaaaaaaaachbaaaaaaaaaaaaaaaegmcaaaaaaaaaaaaaajgkaaaaaaa",
"con_h_expr_e": null,
"con_phi_expr": null,
"con_phi_expr_e": null,
"con_r_expr": null,
"con_r_expr_e": null,
"con_r_in_phi": null,
"con_r_in_phi_e": null,
"cost_conl_custom_outer_hess": null,
"cost_conl_custom_outer_hess_0": null,
"cost_conl_custom_outer_hess_e": null,
"cost_expr_ext_cost": null,
"cost_expr_ext_cost_0": null,
"cost_expr_ext_cost_custom_hess": null,
"cost_expr_ext_cost_custom_hess_0": null,
"cost_expr_ext_cost_custom_hess_e": null,
"cost_expr_ext_cost_e": null,
"cost_psi_expr": null,
"cost_psi_expr_0": null,
"cost_psi_expr_e": null,
"cost_r_in_psi_expr": null,
"cost_r_in_psi_expr_0": null,
"cost_r_in_psi_expr_e": null,
"cost_y_expr": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegkaaaaaaaaaaaaaaagaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaafaaaaaaaaaaaaaaagaaaaaaaaaaaaaaaegeaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaakaaaaaaaihpfpgcgdhehbgdgmgfgegpcaaaaaaaaaaaaaafaaaaaaaihpffghgpgegbaaaaaaaaaaaaaaaegbaaaaaaaaaaaaaaaegeaaaaaaaaaaaaaaaeglaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegdaaaaaaaaaaaaaaaegmcaaaaaaaaaaaaaajgcaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaadgpgngggpgchehpfcgchbglgfgegdaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaamgfgbgegpfehpfggpgmgmgpghhcheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaadhehpgahpfegjgdhehbgogdgfgegbaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegmcaaaaaaaaaaaaaajgkaaaaaaachcaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaabgpffghgpgegcaaaaaaaaaaaaaaachdbaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaagaaaaaaaahchfgghpfbgegpcaaaaaaaaaaaaaafaaaaaaakgpffghgpg",
"cost_y_expr_0": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegkaaaaaaaaaaaaaaagaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaafaaaaaaaaaaaaaaagaaaaaaaaaaaaaaaegeaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaakaaaaaaaihpfpgcgdhehbgdgmgfgegpcaaaaaaaaaaaaaafaaaaaaaihpffghgpgegbaaaaaaaaaaaaaaaegbaaaaaaaaaaaaaaaegeaaaaaaaaaaaaaaaeglaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegdaaaaaaaaaaaaaaaegmcaaaaaaaaaaaaaajgcaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaadgpgngggpgchehpfcgchbglgfgegdaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaamgfgbgegpfehpfggpgmgmgpghhcheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaadhehpgahpfegjgdhehbgogdgfgegbaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegmcaaaaaaaaaaaaaajgkaaaaaaachcaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaabgpffghgpgegcaaaaaaaaaaaaaaachdbaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaagaaaaaaaahchfgghpfbgegpcaaaaaaaaaaaaaafaaaaaaakgpffghgpg",
"cost_y_expr_e": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegjaaaaaaaaaaaaaaafaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaafaaaaaaaaaaaaaaaegeaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaakaaaaaaaihpfpgcgdhehbgdgmgfgegpcaaaaaaaaaaaaaafaaaaaaaihpffghgpgegbaaaaaaaaaaaaaaaegbaaaaaaaaaaaaaaaegeaaaaaaaaaaaaaaaeglaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegdaaaaaaaaaaaaaaaegmcaaaaaaaaaaaaaajgcaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaadgpgngggpgchehpfcgchbglgfgegdaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaamgfgbgegpfehpfggpgmgmgpghhcheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaadhehpgahpfegjgdhehbgogdgfgegbaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegmcaaaaaaaaaaaaaajgkaaaaaaachcaaaaaaaaaaaaaaacheaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaabgpffghgpgegcaaaaaaaaaaaaaaachdbaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaagaaaaaaaahchfgghpfbg",
"disc_dyn_expr": null,
"dyn_disc_fun": null,
"dyn_disc_fun_jac": null,
"dyn_disc_fun_jac_hess": null,
"dyn_ext_fun_type": "casadi",
"dyn_generic_source": null,
"f_expl_expr": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaeghaaaaaaaaaaaaaaadaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegpcaaaaaaaaaaaaaafaaaaaaabgpffghgpgegpcaaaaaaaaaaaaaafaaaaaaakgpffghgpg",
"f_impl_expr": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaeghaaaaaaaaaaaaaaadaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaajaaaaaaaihpffghgpgpfegpgehegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaajaaaaaaaghpffghgpgpfegpgehegpcaaaaaaaaaaaaaafaaaaaaabgpffghgpgegcaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaajaaaaaaabgpffghgpgpfegpgehegpcaaaaaaaaaaaaaafaaaaaaakgpffghgpg",
"gnsf": {
"nontrivial_f_LO": 1,
"purely_linear": 0
},
"name": "long",
"p": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegmaaaaaaaaaaaaaaaiaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaafaaaaaaaaaaaaaaagaaaaaaaaaaaaaaahaaaaaaaaaaaaaaaiaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaabgpfngjgogegpcaaaaaaaaaaaaaafaaaaaaabgpfngbgihegpcaaaaaaaaaaaaaakaaaaaaaihpfpgcgdhehbgdgmgfgegpcaaaaaaaaaaaaaagaaaaaaaahchfgghpfbgegpcaaaaaaaaaaaaaanaaaaaaamgfgbgegpfehpfggpgmgmgpghhegpcaaaaaaaaaaaaaacbaaaaaamgfgbgegpfegbgoghgfgchpfggbgdgehpgchegpcaaaaaaaaaaaaaanaaaaaaadgpgngggpgchehpfcgchbglgfgegpcaaaaaaaaaaaaaanaaaaaaadhehpgahpfegjgdhehbgogdgfg",
"u": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegfaaaaaaaaaaaaaaabaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaakgpffghgpg",
"x": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaeghaaaaaaaaaaaaaaadaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaafaaaaaaaihpffghgpgegpcaaaaaaaaaaaaaafaaaaaaaghpffghgpgegpcaaaaaaaaaaaaaafaaaaaaabgpffghgpg",
"xdot": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaeghaaaaaaaaaaaaaaadaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaacaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaajaaaaaaaihpffghgpgpfegpgehegpcaaaaaaaaaaaaaajaaaaaaaghpffghgpgpfegpgehegpcaaaaaaaaaaaaaajaaaaaaabgpffghgpgpfegpgeh",
"z": "jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegdaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
"parameter_values": [
-1.2,
1.2,
0.0,
0.0,
"jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegfaaaaaaaaaaaaaaabaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaamgfgbgegpfehpfggpgmgmgpghh",
0.8,
"jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegfaaaaaaaaaaaaaaabaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaadgpgngggpgchehpfcgchbglgfg",
"jhpnnagiieahaaaadaaaaaaaaaaaaaaaaaegfaaaaaaaaaaaaaaabaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaegpcaaaaaaaaaaaaaanaaaaaaadhehpgahpfegjgdhehbgogdgfg"
],
"problem_class": "OCP",
"shared_lib_ext": ".so",
"solver_options": {
"Tsim": 0.06944444444444445,
"alpha_min": 0.05,
"alpha_reduction": 0.7,
"collocation_type": "GAUSS_LEGENDRE",
"custom_templates": [],
"custom_update_copy": true,
"custom_update_filename": "",
"custom_update_header_filename": "",
"eps_sufficient_descent": 0.0001,
"exact_hess_constr": 1,
"exact_hess_cost": 1,
"exact_hess_dyn": 1,
"ext_cost_num_hess": 0,
"ext_fun_compile_flags": "-O2",
"full_step_dual": 0,
"globalization": "FIXED_STEP",
"globalization_use_SOC": 0,
"hessian_approx": "GAUSS_NEWTON",
"hpipm_mode": "BALANCE",
"initialize_t_slacks": 0,
"integrator_type": "ERK",
"levenberg_marquardt": 0.0,
"line_search_use_sufficient_descent": 0,
"model_external_shared_lib_dir": null,
"model_external_shared_lib_name": null,
"nlp_solver_ext_qp_res": 0,
"nlp_solver_max_iter": 100,
"nlp_solver_step_length": 1.0,
"nlp_solver_tol_comp": 1e-06,
"nlp_solver_tol_eq": 1e-06,
"nlp_solver_tol_ineq": 1e-06,
"nlp_solver_tol_stat": 1e-06,
"nlp_solver_type": "SQP_RTI",
"print_level": 0,
"qp_solver": "PARTIAL_CONDENSING_HPIPM",
"qp_solver_cond_N": 1,
"qp_solver_cond_ric_alg": 1,
"qp_solver_iter_max": 10,
"qp_solver_ric_alg": 1,
"qp_solver_tol_comp": 0.001,
"qp_solver_tol_eq": 0.001,
"qp_solver_tol_ineq": 0.001,
"qp_solver_tol_stat": 0.001,
"qp_solver_warm_start": 0,
"regularize_method": null,
"shooting_nodes": [
0.0,
0.06944444444444445,
0.2777777777777778,
0.625,
1.1111111111111112,
1.7361111111111114,
2.5,
3.4027777777777786,
4.444444444444445,
5.625,
6.9444444444444455,
8.402777777777777,
10.0
],
"sim_method_jac_reuse": [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
],
"sim_method_newton_iter": 3,
"sim_method_newton_tol": 0.0,
"sim_method_num_stages": [
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4
],
"sim_method_num_steps": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"tf": 10.0,
"time_steps": [
0.06944444444444445,
0.20833333333333334,
0.3472222222222222,
0.48611111111111116,
0.6250000000000002,
0.7638888888888886,
0.9027777777777786,
1.041666666666666,
1.1805555555555554,
1.3194444444444455,
1.4583333333333313,
1.5972222222222232
]
}
}

View File

@@ -0,0 +1,213 @@
#
# Copyright (c) The acados authors.
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
# define sources and use make's implicit rules to generate object files (*.o)
# model
MODEL_SRC=
MODEL_SRC+= long_model/long_expl_ode_fun.c
MODEL_SRC+= long_model/long_expl_vde_forw.c
MODEL_SRC+= long_model/long_expl_vde_adj.c
MODEL_OBJ := $(MODEL_SRC:.c=.o)
# optimal control problem - mostly CasADi exports
OCP_SRC=
OCP_SRC+= long_constraints/long_constr_h_fun_jac_uxt_zt.c
OCP_SRC+= long_constraints/long_constr_h_fun.c
OCP_SRC+= long_cost/long_cost_y_0_fun.c
OCP_SRC+= long_cost/long_cost_y_0_fun_jac_ut_xt.c
OCP_SRC+= long_cost/long_cost_y_0_hess.c
OCP_SRC+= long_cost/long_cost_y_fun.c
OCP_SRC+= long_cost/long_cost_y_fun_jac_ut_xt.c
OCP_SRC+= long_cost/long_cost_y_hess.c
OCP_SRC+= long_cost/long_cost_y_e_fun.c
OCP_SRC+= long_cost/long_cost_y_e_fun_jac_ut_xt.c
OCP_SRC+= long_cost/long_cost_y_e_hess.c
OCP_SRC+= acados_solver_long.c
OCP_OBJ := $(OCP_SRC:.c=.o)
# for sim solver
SIM_SRC= acados_sim_solver_long.c
SIM_OBJ := $(SIM_SRC:.c=.o)
# for target example
EX_SRC= main_long.c
EX_OBJ := $(EX_SRC:.c=.o)
EX_EXE := $(EX_SRC:.c=)
# for target example_sim
EX_SIM_SRC= main_sim_long.c
EX_SIM_OBJ := $(EX_SIM_SRC:.c=.o)
EX_SIM_EXE := $(EX_SIM_SRC:.c=)
# combine model, sim and ocp object files
OBJ=
OBJ+= $(MODEL_OBJ)
OBJ+= $(SIM_OBJ)
OBJ+= $(OCP_OBJ)
EXTERNAL_DIR=
EXTERNAL_LIB=
INCLUDE_PATH = /data/openpilot/third_party/acados/include
LIB_PATH = /data/openpilot/third_party/acados/lib
# preprocessor flags for make's implicit rules
CPPFLAGS+= -I$(INCLUDE_PATH)
CPPFLAGS+= -I$(INCLUDE_PATH)/acados
CPPFLAGS+= -I$(INCLUDE_PATH)/blasfeo/include
CPPFLAGS+= -I$(INCLUDE_PATH)/hpipm/include
# define the c-compiler flags for make's implicit rules
CFLAGS = -fPIC -std=c99 -O2#-fno-diagnostics-show-line-numbers -g
# # Debugging
# CFLAGS += -g3
# linker flags
LDFLAGS+= -L$(LIB_PATH)
# link to libraries
LDLIBS+= -lacados
LDLIBS+= -lhpipm
LDLIBS+= -lblasfeo
LDLIBS+= -lm
LDLIBS+=
# libraries
LIBACADOS_SOLVER=libacados_solver_long.so
LIBACADOS_OCP_SOLVER=libacados_ocp_solver_long.so
LIBACADOS_SIM_SOLVER=lib$(SIM_SRC:.c=.so)
# virtual targets
.PHONY : all clean
#all: clean example_sim example shared_lib
all: clean example_sim example
shared_lib: bundled_shared_lib ocp_shared_lib sim_shared_lib
# some linker targets
example: $(EX_OBJ) $(OBJ)
$(CC) $^ -o $(EX_EXE) $(LDFLAGS) $(LDLIBS)
example_sim: $(EX_SIM_OBJ) $(MODEL_OBJ) $(SIM_OBJ)
$(CC) $^ -o $(EX_SIM_EXE) $(LDFLAGS) $(LDLIBS)
bundled_shared_lib: $(OBJ)
$(CC) -shared $^ -o $(LIBACADOS_SOLVER) $(LDFLAGS) $(LDLIBS)
ocp_shared_lib: $(OCP_OBJ) $(MODEL_OBJ)
$(CC) -shared $^ -o $(LIBACADOS_OCP_SOLVER) $(LDFLAGS) $(LDLIBS) \
-L$(EXTERNAL_DIR) -l$(EXTERNAL_LIB)
sim_shared_lib: $(SIM_OBJ) $(MODEL_OBJ)
$(CC) -shared $^ -o $(LIBACADOS_SIM_SOLVER) $(LDFLAGS) $(LDLIBS)
# Cython targets
ocp_cython_c: ocp_shared_lib
cython \
-o acados_ocp_solver_pyx.c \
-I $(INCLUDE_PATH)/../interfaces/acados_template/acados_template \
$(INCLUDE_PATH)/../interfaces/acados_template/acados_template/acados_ocp_solver_pyx.pyx \
-I /data/openpilot/selfdrive/controls/lib/longitudinal_mpc_lib/c_generated_code \
ocp_cython_o: ocp_cython_c
$(CC) $(ACADOS_FLAGS) -c -O2 \
-fPIC \
-o acados_ocp_solver_pyx.o \
-I $(INCLUDE_PATH)/blasfeo/include/ \
-I $(INCLUDE_PATH)/hpipm/include/ \
-I $(INCLUDE_PATH) \
-I /usr/local/venv/lib/python3.12/site-packages/numpy/_core/include \
-I /usr/include/python3.12 \
acados_ocp_solver_pyx.c \
ocp_cython: ocp_cython_o
$(CC) $(ACADOS_FLAGS) -shared \
-o acados_ocp_solver_pyx.so \
-Wl,-rpath=$(LIB_PATH) \
acados_ocp_solver_pyx.o \
$(abspath .)/libacados_ocp_solver_long.so \
$(LDFLAGS) $(LDLIBS)
# Sim Cython targets
sim_cython_c: sim_shared_lib
cython \
-o acados_sim_solver_pyx.c \
-I $(INCLUDE_PATH)/../interfaces/acados_template/acados_template \
$(INCLUDE_PATH)/../interfaces/acados_template/acados_template/acados_sim_solver_pyx.pyx \
-I /data/openpilot/selfdrive/controls/lib/longitudinal_mpc_lib/c_generated_code \
sim_cython_o: sim_cython_c
$(CC) $(ACADOS_FLAGS) -c -O2 \
-fPIC \
-o acados_sim_solver_pyx.o \
-I $(INCLUDE_PATH)/blasfeo/include/ \
-I $(INCLUDE_PATH)/hpipm/include/ \
-I $(INCLUDE_PATH) \
-I /usr/local/venv/lib/python3.12/site-packages/numpy/_core/include \
-I /usr/include/python3.12 \
acados_sim_solver_pyx.c \
sim_cython: sim_cython_o
$(CC) $(ACADOS_FLAGS) -shared \
-o acados_sim_solver_pyx.so \
-Wl,-rpath=$(LIB_PATH) \
acados_sim_solver_pyx.o \
$(abspath .)/libacados_sim_solver_long.so \
$(LDFLAGS) $(LDLIBS)
clean:
$(RM) $(OBJ) $(EX_OBJ) $(EX_SIM_OBJ)
$(RM) $(LIBACADOS_SOLVER) $(LIBACADOS_OCP_SOLVER) $(LIBACADOS_SIM_SOLVER)
$(RM) $(EX_EXE) $(EX_SIM_EXE)
clean_ocp_shared_lib:
$(RM) $(LIBACADOS_OCP_SOLVER)
$(RM) $(OCP_OBJ)
clean_ocp_cython:
$(RM) libacados_ocp_solver_long.so
$(RM) acados_solver_long.o
$(RM) acados_ocp_solver_pyx.so
$(RM) acados_ocp_solver_pyx.o
clean_sim_cython:
$(RM) libacados_sim_solver_long.so
$(RM) acados_sim_solver_long.o
$(RM) acados_sim_solver_pyx.so
$(RM) acados_sim_solver_pyx.o

View File

@@ -0,0 +1,101 @@
/*
* Copyright (c) The acados authors.
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef ACADOS_SIM_long_H_
#define ACADOS_SIM_long_H_
#include "acados_c/sim_interface.h"
#include "acados_c/external_function_interface.h"
#define LONG_NX 3
#define LONG_NZ 0
#define LONG_NU 1
#define LONG_NP 8
#ifdef __cplusplus
extern "C" {
#endif
// ** capsule for solver data **
typedef struct sim_solver_capsule
{
// acados objects
sim_in *acados_sim_in;
sim_out *acados_sim_out;
sim_solver *acados_sim_solver;
sim_opts *acados_sim_opts;
sim_config *acados_sim_config;
void *acados_sim_dims;
/* external functions */
// ERK
external_function_param_casadi * sim_forw_vde_casadi;
external_function_param_casadi * sim_vde_adj_casadi;
external_function_param_casadi * sim_expl_ode_fun_casadi;
external_function_param_casadi * sim_expl_ode_hess;
// IRK
external_function_param_casadi * sim_impl_dae_fun;
external_function_param_casadi * sim_impl_dae_fun_jac_x_xdot_z;
external_function_param_casadi * sim_impl_dae_jac_x_xdot_u_z;
external_function_param_casadi * sim_impl_dae_hess;
// GNSF
external_function_param_casadi * sim_gnsf_phi_fun;
external_function_param_casadi * sim_gnsf_phi_fun_jac_y;
external_function_param_casadi * sim_gnsf_phi_jac_y_uhat;
external_function_param_casadi * sim_gnsf_f_lo_jac_x1_x1dot_u_z;
external_function_param_casadi * sim_gnsf_get_matrices_fun;
} sim_solver_capsule;
ACADOS_SYMBOL_EXPORT int long_acados_sim_create(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT int long_acados_sim_solve(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT int long_acados_sim_free(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT int long_acados_sim_update_params(sim_solver_capsule *capsule, double *value, int np);
ACADOS_SYMBOL_EXPORT sim_config * long_acados_get_sim_config(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT sim_in * long_acados_get_sim_in(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT sim_out * long_acados_get_sim_out(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT void * long_acados_get_sim_dims(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT sim_opts * long_acados_get_sim_opts(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT sim_solver * long_acados_get_sim_solver(sim_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT sim_solver_capsule * long_acados_sim_solver_create_capsule(void);
ACADOS_SYMBOL_EXPORT int long_acados_sim_solver_free_capsule(sim_solver_capsule *capsule);
#ifdef __cplusplus
}
#endif
#endif // ACADOS_SIM_long_H_

View File

@@ -0,0 +1,62 @@
#
# Copyright (c) The acados authors.
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
cimport acados_solver_common
cdef extern from "acados_solver_long.h":
ctypedef struct nlp_solver_capsule "long_solver_capsule":
pass
nlp_solver_capsule * acados_create_capsule "long_acados_create_capsule"()
int acados_free_capsule "long_acados_free_capsule"(nlp_solver_capsule *capsule)
int acados_create "long_acados_create"(nlp_solver_capsule * capsule)
int acados_create_with_discretization "long_acados_create_with_discretization"(nlp_solver_capsule * capsule, int n_time_steps, double* new_time_steps)
int acados_update_time_steps "long_acados_update_time_steps"(nlp_solver_capsule * capsule, int N, double* new_time_steps)
int acados_update_qp_solver_cond_N "long_acados_update_qp_solver_cond_N"(nlp_solver_capsule * capsule, int qp_solver_cond_N)
int acados_update_params "long_acados_update_params"(nlp_solver_capsule * capsule, int stage, double *value, int np_)
int acados_update_params_sparse "long_acados_update_params_sparse"(nlp_solver_capsule * capsule, int stage, int *idx, double *p, int n_update)
int acados_solve "long_acados_solve"(nlp_solver_capsule * capsule)
int acados_reset "long_acados_reset"(nlp_solver_capsule * capsule, int reset_qp_solver_mem)
int acados_free "long_acados_free"(nlp_solver_capsule * capsule)
void acados_print_stats "long_acados_print_stats"(nlp_solver_capsule * capsule)
int acados_custom_update "long_acados_custom_update"(nlp_solver_capsule* capsule, double * data, int data_len)
acados_solver_common.ocp_nlp_in *acados_get_nlp_in "long_acados_get_nlp_in"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_out *acados_get_nlp_out "long_acados_get_nlp_out"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_out *acados_get_sens_out "long_acados_get_sens_out"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_solver *acados_get_nlp_solver "long_acados_get_nlp_solver"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_config *acados_get_nlp_config "long_acados_get_nlp_config"(nlp_solver_capsule * capsule)
void *acados_get_nlp_opts "long_acados_get_nlp_opts"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_dims *acados_get_nlp_dims "long_acados_get_nlp_dims"(nlp_solver_capsule * capsule)
acados_solver_common.ocp_nlp_plan *acados_get_nlp_plan "long_acados_get_nlp_plan"(nlp_solver_capsule * capsule)

View File

@@ -0,0 +1,172 @@
/*
* Copyright (c) The acados authors.
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef ACADOS_SOLVER_long_H_
#define ACADOS_SOLVER_long_H_
#include "acados/utils/types.h"
#include "acados_c/ocp_nlp_interface.h"
#include "acados_c/external_function_interface.h"
#define LONG_NX 3
#define LONG_NZ 0
#define LONG_NU 1
#define LONG_NP 8
#define LONG_NBX 0
#define LONG_NBX0 3
#define LONG_NBU 0
#define LONG_NSBX 0
#define LONG_NSBU 0
#define LONG_NSH 4
#define LONG_NSG 0
#define LONG_NSPHI 0
#define LONG_NSHN 0
#define LONG_NSGN 0
#define LONG_NSPHIN 0
#define LONG_NSBXN 0
#define LONG_NS 4
#define LONG_NSN 0
#define LONG_NG 0
#define LONG_NBXN 0
#define LONG_NGN 0
#define LONG_NY0 6
#define LONG_NY 6
#define LONG_NYN 5
#define LONG_N 12
#define LONG_NH 4
#define LONG_NPHI 0
#define LONG_NHN 0
#define LONG_NPHIN 0
#define LONG_NR 0
#ifdef __cplusplus
extern "C" {
#endif
// ** capsule for solver data **
typedef struct long_solver_capsule
{
// acados objects
ocp_nlp_in *nlp_in;
ocp_nlp_out *nlp_out;
ocp_nlp_out *sens_out;
ocp_nlp_solver *nlp_solver;
void *nlp_opts;
ocp_nlp_plan_t *nlp_solver_plan;
ocp_nlp_config *nlp_config;
ocp_nlp_dims *nlp_dims;
// number of expected runtime parameters
unsigned int nlp_np;
/* external functions */
// dynamics
external_function_param_casadi *forw_vde_casadi;
external_function_param_casadi *expl_ode_fun;
// cost
external_function_param_casadi *cost_y_fun;
external_function_param_casadi *cost_y_fun_jac_ut_xt;
external_function_param_casadi *cost_y_hess;
external_function_param_casadi cost_y_0_fun;
external_function_param_casadi cost_y_0_fun_jac_ut_xt;
external_function_param_casadi cost_y_0_hess;
external_function_param_casadi cost_y_e_fun;
external_function_param_casadi cost_y_e_fun_jac_ut_xt;
external_function_param_casadi cost_y_e_hess;
// constraints
external_function_param_casadi *nl_constr_h_fun_jac;
external_function_param_casadi *nl_constr_h_fun;
} long_solver_capsule;
ACADOS_SYMBOL_EXPORT long_solver_capsule * long_acados_create_capsule(void);
ACADOS_SYMBOL_EXPORT int long_acados_free_capsule(long_solver_capsule *capsule);
ACADOS_SYMBOL_EXPORT int long_acados_create(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT int long_acados_reset(long_solver_capsule* capsule, int reset_qp_solver_mem);
/**
* Generic version of long_acados_create which allows to use a different number of shooting intervals than
* the number used for code generation. If new_time_steps=NULL and n_time_steps matches the number used for code
* generation, the time-steps from code generation is used.
*/
ACADOS_SYMBOL_EXPORT int long_acados_create_with_discretization(long_solver_capsule * capsule, int n_time_steps, double* new_time_steps);
/**
* Update the time step vector. Number N must be identical to the currently set number of shooting nodes in the
* nlp_solver_plan. Returns 0 if no error occurred and a otherwise a value other than 0.
*/
ACADOS_SYMBOL_EXPORT int long_acados_update_time_steps(long_solver_capsule * capsule, int N, double* new_time_steps);
/**
* This function is used for updating an already initialized solver with a different number of qp_cond_N.
*/
ACADOS_SYMBOL_EXPORT int long_acados_update_qp_solver_cond_N(long_solver_capsule * capsule, int qp_solver_cond_N);
ACADOS_SYMBOL_EXPORT int long_acados_update_params(long_solver_capsule * capsule, int stage, double *value, int np);
ACADOS_SYMBOL_EXPORT int long_acados_update_params_sparse(long_solver_capsule * capsule, int stage, int *idx, double *p, int n_update);
ACADOS_SYMBOL_EXPORT int long_acados_solve(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT int long_acados_free(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT void long_acados_print_stats(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT int long_acados_custom_update(long_solver_capsule* capsule, double* data, int data_len);
ACADOS_SYMBOL_EXPORT ocp_nlp_in *long_acados_get_nlp_in(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_out *long_acados_get_nlp_out(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_out *long_acados_get_sens_out(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_solver *long_acados_get_nlp_solver(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_config *long_acados_get_nlp_config(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT void *long_acados_get_nlp_opts(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_dims *long_acados_get_nlp_dims(long_solver_capsule * capsule);
ACADOS_SYMBOL_EXPORT ocp_nlp_plan_t *long_acados_get_nlp_plan(long_solver_capsule * capsule);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // ACADOS_SOLVER_long_H_

View File

@@ -0,0 +1,66 @@
/*
* Copyright (c) The acados authors.
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef long_CONSTRAINTS
#define long_CONSTRAINTS
#ifdef __cplusplus
extern "C" {
#endif
int long_constr_h_fun_jac_uxt_zt(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_constr_h_fun_jac_uxt_zt_work(int *, int *, int *, int *);
const int *long_constr_h_fun_jac_uxt_zt_sparsity_in(int);
const int *long_constr_h_fun_jac_uxt_zt_sparsity_out(int);
int long_constr_h_fun_jac_uxt_zt_n_in(void);
int long_constr_h_fun_jac_uxt_zt_n_out(void);
int long_constr_h_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_constr_h_fun_work(int *, int *, int *, int *);
const int *long_constr_h_fun_sparsity_in(int);
const int *long_constr_h_fun_sparsity_out(int);
int long_constr_h_fun_n_in(void);
int long_constr_h_fun_n_out(void);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // long_CONSTRAINTS

View File

@@ -0,0 +1,119 @@
/*
* Copyright (c) The acados authors.
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef long_COST
#define long_COST
#ifdef __cplusplus
extern "C" {
#endif
// Cost at initial shooting node
int long_cost_y_0_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_cost_y_0_fun_work(int *, int *, int *, int *);
const int *long_cost_y_0_fun_sparsity_in(int);
const int *long_cost_y_0_fun_sparsity_out(int);
int long_cost_y_0_fun_n_in(void);
int long_cost_y_0_fun_n_out(void);
int long_cost_y_0_fun_jac_ut_xt(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_cost_y_0_fun_jac_ut_xt_work(int *, int *, int *, int *);
const int *long_cost_y_0_fun_jac_ut_xt_sparsity_in(int);
const int *long_cost_y_0_fun_jac_ut_xt_sparsity_out(int);
int long_cost_y_0_fun_jac_ut_xt_n_in(void);
int long_cost_y_0_fun_jac_ut_xt_n_out(void);
int long_cost_y_0_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_cost_y_0_hess_work(int *, int *, int *, int *);
const int *long_cost_y_0_hess_sparsity_in(int);
const int *long_cost_y_0_hess_sparsity_out(int);
int long_cost_y_0_hess_n_in(void);
int long_cost_y_0_hess_n_out(void);
// Cost at path shooting node
int long_cost_y_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_cost_y_fun_work(int *, int *, int *, int *);
const int *long_cost_y_fun_sparsity_in(int);
const int *long_cost_y_fun_sparsity_out(int);
int long_cost_y_fun_n_in(void);
int long_cost_y_fun_n_out(void);
int long_cost_y_fun_jac_ut_xt(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_cost_y_fun_jac_ut_xt_work(int *, int *, int *, int *);
const int *long_cost_y_fun_jac_ut_xt_sparsity_in(int);
const int *long_cost_y_fun_jac_ut_xt_sparsity_out(int);
int long_cost_y_fun_jac_ut_xt_n_in(void);
int long_cost_y_fun_jac_ut_xt_n_out(void);
int long_cost_y_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_cost_y_hess_work(int *, int *, int *, int *);
const int *long_cost_y_hess_sparsity_in(int);
const int *long_cost_y_hess_sparsity_out(int);
int long_cost_y_hess_n_in(void);
int long_cost_y_hess_n_out(void);
// Cost at terminal shooting node
int long_cost_y_e_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_cost_y_e_fun_work(int *, int *, int *, int *);
const int *long_cost_y_e_fun_sparsity_in(int);
const int *long_cost_y_e_fun_sparsity_out(int);
int long_cost_y_e_fun_n_in(void);
int long_cost_y_e_fun_n_out(void);
int long_cost_y_e_fun_jac_ut_xt(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_cost_y_e_fun_jac_ut_xt_work(int *, int *, int *, int *);
const int *long_cost_y_e_fun_jac_ut_xt_sparsity_in(int);
const int *long_cost_y_e_fun_jac_ut_xt_sparsity_out(int);
int long_cost_y_e_fun_jac_ut_xt_n_in(void);
int long_cost_y_e_fun_jac_ut_xt_n_out(void);
int long_cost_y_e_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_cost_y_e_hess_work(int *, int *, int *, int *);
const int *long_cost_y_e_hess_sparsity_in(int);
const int *long_cost_y_e_hess_sparsity_out(int);
int long_cost_y_e_hess_n_in(void);
int long_cost_y_e_hess_n_out(void);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // long_COST

View File

@@ -0,0 +1,71 @@
/*
* Copyright (c) The acados authors.
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef long_MODEL
#define long_MODEL
#ifdef __cplusplus
extern "C" {
#endif
/* explicit ODE */
// explicit ODE
int long_expl_ode_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_expl_ode_fun_work(int *, int *, int *, int *);
const int *long_expl_ode_fun_sparsity_in(int);
const int *long_expl_ode_fun_sparsity_out(int);
int long_expl_ode_fun_n_in(void);
int long_expl_ode_fun_n_out(void);
// explicit forward VDE
int long_expl_vde_forw(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_expl_vde_forw_work(int *, int *, int *, int *);
const int *long_expl_vde_forw_sparsity_in(int);
const int *long_expl_vde_forw_sparsity_out(int);
int long_expl_vde_forw_n_in(void);
int long_expl_vde_forw_n_out(void);
// explicit adjoint VDE
int long_expl_vde_adj(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int long_expl_vde_adj_work(int *, int *, int *, int *);
const int *long_expl_vde_adj_sparsity_in(int);
const int *long_expl_vde_adj_sparsity_out(int);
int long_expl_vde_adj_n_in(void);
int long_expl_vde_adj_n_out(void);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // long_MODEL

View File

@@ -0,0 +1,535 @@
#!/usr/bin/env python3
import os
import time
import numpy as np
from cereal import log
from opendbc.car.interfaces import ACCEL_MIN
from openpilot.common.realtime import DT_MDL
from openpilot.common.swaglog import cloudlog
# WARNING: imports outside of constants will not trigger a rebuild
from openpilot.selfdrive.modeld.constants import index_function
from openpilot.selfdrive.controls.radard import _LEAD_ACCEL_TAU
# from openpilot.selfdrive.carrot.carrot_functions import CarrotPlanner
from openpilot.selfdrive.carrot.carrot_functions import XState
if __name__ == '__main__': # generating code
from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
else:
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverCython
from casadi import SX, vertcat
MODEL_NAME = 'long'
LONG_MPC_DIR = os.path.dirname(os.path.abspath(__file__))
EXPORT_DIR = os.path.join(LONG_MPC_DIR, "c_generated_code")
JSON_FILE = os.path.join(LONG_MPC_DIR, "acados_ocp_long.json")
SOURCES = ['lead0', 'lead1', 'cruise', 'e2e']
X_DIM = 3
U_DIM = 1
PARAM_DIM = 8
COST_E_DIM = 5
COST_DIM = COST_E_DIM + 1
CONSTR_DIM = 4
X_EGO_OBSTACLE_COST = 3.
X_EGO_COST = 0.
V_EGO_COST = 0.
A_EGO_COST = 0.
J_EGO_COST = 5.0
A_CHANGE_COST = 250.
A_CHANGE_COST_STARTING = 30.
DANGER_ZONE_COST = 100.
CRASH_DISTANCE = .25
LEAD_DANGER_FACTOR = 0.8 # 0.75
LIMIT_COST = 1e6
ACADOS_SOLVER_TYPE = 'SQP_RTI'
# Fewer timestamps don't hurt performance and lead to
# much better convergence of the MPC with low iterations
N = 12
MAX_T = 10.0
T_IDXS_LST = [index_function(idx, max_val=MAX_T, max_idx=N) for idx in range(N+1)]
T_IDXS = np.array(T_IDXS_LST)
FCW_IDXS = T_IDXS < 5.0
T_DIFFS = np.diff(T_IDXS, prepend=[0.])
COMFORT_BRAKE = 2.5
STOP_DISTANCE = 6.0
def get_jerk_factor(personality=log.LongitudinalPersonality.standard):
if personality==log.LongitudinalPersonality.moreRelaxed:
return 1.0
elif personality==log.LongitudinalPersonality.relaxed:
return 1.0
elif personality==log.LongitudinalPersonality.standard:
return 1.0
elif personality==log.LongitudinalPersonality.aggressive:
return 0.5
else:
raise NotImplementedError("Longitudinal personality not supported")
def get_T_FOLLOW(personality=log.LongitudinalPersonality.standard):
if personality==log.LongitudinalPersonality.moreRelaxed:
return 2.0
elif personality==log.LongitudinalPersonality.relaxed:
return 1.75
elif personality==log.LongitudinalPersonality.standard:
return 1.45
elif personality==log.LongitudinalPersonality.aggressive:
return 1.25
else:
raise NotImplementedError("Longitudinal personality not supported")
def get_stopped_equivalence_factor(v_lead):
return (v_lead**2) / (2 * COMFORT_BRAKE)
def get_safe_obstacle_distance(v_ego, t_follow=None, comfort_brake=COMFORT_BRAKE, stop_distance=STOP_DISTANCE):
if t_follow is None:
t_follow = get_T_FOLLOW()
return (v_ego**2) / (2 * comfort_brake) + t_follow * v_ego + stop_distance
def desired_follow_distance(v_ego, v_lead, comfort_brake, stop_distance, t_follow=None):
if t_follow is None:
t_follow = get_T_FOLLOW()
return get_safe_obstacle_distance(v_ego, t_follow, comfort_brake, stop_distance) - get_stopped_equivalence_factor(v_lead)
def gen_long_model():
model = AcadosModel()
model.name = MODEL_NAME
# set up states & controls
x_ego = SX.sym('x_ego')
v_ego = SX.sym('v_ego')
a_ego = SX.sym('a_ego')
model.x = vertcat(x_ego, v_ego, a_ego)
# controls
j_ego = SX.sym('j_ego')
model.u = vertcat(j_ego)
# xdot
x_ego_dot = SX.sym('x_ego_dot')
v_ego_dot = SX.sym('v_ego_dot')
a_ego_dot = SX.sym('a_ego_dot')
model.xdot = vertcat(x_ego_dot, v_ego_dot, a_ego_dot)
# live parameters
a_min = SX.sym('a_min')
a_max = SX.sym('a_max')
x_obstacle = SX.sym('x_obstacle')
prev_a = SX.sym('prev_a')
lead_t_follow = SX.sym('lead_t_follow')
lead_danger_factor = SX.sym('lead_danger_factor')
comfort_brake = SX.sym('comfort_brake')
stop_distance = SX.sym('stop_distance')
model.p = vertcat(a_min, a_max, x_obstacle, prev_a, lead_t_follow, lead_danger_factor, comfort_brake, stop_distance)
# dynamics model
f_expl = vertcat(v_ego, a_ego, j_ego)
model.f_impl_expr = model.xdot - f_expl
model.f_expl_expr = f_expl
return model
def gen_long_ocp():
ocp = AcadosOcp()
ocp.model = gen_long_model()
Tf = T_IDXS[-1]
# set dimensions
ocp.dims.N = N
# set cost module
ocp.cost.cost_type = 'NONLINEAR_LS'
ocp.cost.cost_type_e = 'NONLINEAR_LS'
QR = np.zeros((COST_DIM, COST_DIM))
Q = np.zeros((COST_E_DIM, COST_E_DIM))
ocp.cost.W = QR
ocp.cost.W_e = Q
x_ego, v_ego, a_ego = ocp.model.x[0], ocp.model.x[1], ocp.model.x[2]
j_ego = ocp.model.u[0]
a_min, a_max = ocp.model.p[0], ocp.model.p[1]
x_obstacle = ocp.model.p[2]
prev_a = ocp.model.p[3]
lead_t_follow = ocp.model.p[4]
lead_danger_factor = ocp.model.p[5]
comfort_brake = ocp.model.p[6]
stop_distance = ocp.model.p[7]
ocp.cost.yref = np.zeros((COST_DIM, ))
ocp.cost.yref_e = np.zeros((COST_E_DIM, ))
desired_dist_comfort = get_safe_obstacle_distance(v_ego, lead_t_follow, comfort_brake, stop_distance)
# The main cost in normal operation is how close you are to the "desired" distance
# from an obstacle at every timestep. This obstacle can be a lead car
# or other object. In e2e mode we can use x_position targets as a cost
# instead.
costs = [((x_obstacle - x_ego) - (desired_dist_comfort)) / (v_ego + 10.),
x_ego,
v_ego,
a_ego,
a_ego - prev_a,
j_ego]
ocp.model.cost_y_expr = vertcat(*costs)
ocp.model.cost_y_expr_e = vertcat(*costs[:-1])
# Constraints on speed, acceleration and desired distance to
# the obstacle, which is treated as a slack constraint so it
# behaves like an asymmetrical cost.
constraints = vertcat(v_ego,
(a_ego - a_min),
(a_max - a_ego),
((x_obstacle - x_ego) - lead_danger_factor * (desired_dist_comfort)) / (v_ego + 10.))
ocp.model.con_h_expr = constraints
x0 = np.zeros(X_DIM)
ocp.constraints.x0 = x0
ocp.parameter_values = np.array([-1.2, 1.2, 0.0, 0.0, lead_t_follow, LEAD_DANGER_FACTOR, comfort_brake, stop_distance])
# We put all constraint cost weights to 0 and only set them at runtime
cost_weights = np.zeros(CONSTR_DIM)
ocp.cost.zl = cost_weights
ocp.cost.Zl = cost_weights
ocp.cost.Zu = cost_weights
ocp.cost.zu = cost_weights
ocp.constraints.lh = np.zeros(CONSTR_DIM)
ocp.constraints.uh = 1e4*np.ones(CONSTR_DIM)
ocp.constraints.idxsh = np.arange(CONSTR_DIM)
# The HPIPM solver can give decent solutions even when it is stopped early
# Which is critical for our purpose where compute time is strictly bounded
# We use HPIPM in the SPEED_ABS mode, which ensures fastest runtime. This
# does not cause issues since the problem is well bounded.
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.nlp_solver_type = ACADOS_SOLVER_TYPE
ocp.solver_options.qp_solver_cond_N = 1
# More iterations take too much time and less lead to inaccurate convergence in
# some situations. Ideally we would run just 1 iteration to ensure fixed runtime.
ocp.solver_options.qp_solver_iter_max = 10
ocp.solver_options.qp_tol = 1e-3
# set prediction horizon
ocp.solver_options.tf = Tf
ocp.solver_options.shooting_nodes = T_IDXS
ocp.code_export_directory = EXPORT_DIR
return ocp
class LongitudinalMpc:
def __init__(self, mode='acc', dt=DT_MDL):
self.mode = mode
self.dt = dt
self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
self.a_change_cost = A_CHANGE_COST
self.j_lead = 0.0
self.reset()
self.source = SOURCES[2]
self.t_follow = 1.0
self.desired_distance = 0.0
self.lead_danger_factor = LEAD_DANGER_FACTOR
def reset(self):
# self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
self.solver.reset()
# self.solver.options_set('print_level', 2)
self.v_solution = np.zeros(N+1)
self.a_solution = np.zeros(N+1)
self.prev_a = np.array(self.a_solution)
self.j_solution = np.zeros(N)
self.yref = np.zeros((N+1, COST_DIM))
for i in range(N):
self.solver.cost_set(i, "yref", self.yref[i])
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
self.x_sol = np.zeros((N+1, X_DIM))
self.u_sol = np.zeros((N,1))
self.params = np.zeros((N+1, PARAM_DIM))
for i in range(N+1):
self.solver.set(i, 'x', np.zeros(X_DIM))
self.last_cloudlog_t = 0
self.status = False
self.crash_cnt = 0.0
self.solution_status = 0
# timers
self.solve_time = 0.0
self.time_qp_solution = 0.0
self.time_linearization = 0.0
self.time_integrator = 0.0
self.x0 = np.zeros(X_DIM)
self.set_weights()
def set_cost_weights(self, cost_weights, constraint_cost_weights):
W = np.asfortranarray(np.diag(cost_weights))
for i in range(N):
# TODO don't hardcode A_CHANGE_COST idx
# reduce the cost on (a-a_prev) later in the horizon.
W[4,4] = cost_weights[4] * np.interp(T_IDXS[i], [0.0, 1.0, 2.0], [1.0, 1.0, 0.0])
self.solver.cost_set(i, 'W', W)
# Setting the slice without the copy make the array not contiguous,
# causing issues with the C interface.
self.solver.cost_set(N, 'W', np.copy(W[:COST_E_DIM, :COST_E_DIM]))
# Set L2 slack cost on lower bound constraints
Zl = np.array(constraint_cost_weights)
for i in range(N):
self.solver.cost_set(i, 'Zl', Zl)
def set_weights(self, prev_accel_constraint=True, personality=log.LongitudinalPersonality.standard, jerk_factor=1.0, a_change_cost_starting=A_CHANGE_COST_STARTING):
#jerk_factor = get_jerk_factor(personality)
if self.mode == 'acc':
a_change_cost = self.a_change_cost if prev_accel_constraint else a_change_cost_starting
cost_weights = [X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, jerk_factor * a_change_cost, jerk_factor * J_EGO_COST]
constraint_cost_weights = [LIMIT_COST, LIMIT_COST, LIMIT_COST, DANGER_ZONE_COST]
elif self.mode == 'blended':
a_change_cost = 40.0 if prev_accel_constraint else 0
cost_weights = [0., 0.1, 0.2, 5.0, a_change_cost, 1.0]
constraint_cost_weights = [LIMIT_COST, LIMIT_COST, LIMIT_COST, DANGER_ZONE_COST]
else:
raise NotImplementedError(f'Planner mode {self.mode} not recognized in planner cost set')
self.set_cost_weights(cost_weights, constraint_cost_weights)
def set_cur_state(self, v, a):
v_prev = self.x0[1]
self.x0[1] = v
self.x0[2] = a
if abs(v_prev - v) > 2.: # probably only helps if v < v_prev
for i in range(N+1):
self.solver.set(i, 'x', self.x0)
@staticmethod
def extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau, j_lead):
j_lead_tau = np.interp(j_lead, [-2.0, 0.0, 2.0], [0.2, 2.0, 0.1]) # tau: 2: 2sec, 1: 4sec, 0.5: 10sec
j_lead_traj = j_lead * np.exp(-j_lead_tau * (T_IDXS**2)/2.)
a_lead_traj = a_lead * np.exp(-a_lead_tau * (T_IDXS**2)/2.) + j_lead_traj
v_lead_traj = np.clip(v_lead + np.cumsum(T_DIFFS * a_lead_traj), 0.0, 1e8)
x_lead_traj = x_lead + np.cumsum(T_DIFFS * v_lead_traj)
lead_xv = np.column_stack((x_lead_traj, v_lead_traj))
return lead_xv
def process_lead(self, lead, j_lead):
v_ego = self.x0[1]
if lead is not None and lead.status:
x_lead = lead.dRel
v_lead = lead.vLead
a_lead = lead.aLeadK
a_lead_tau = lead.aLeadTau
else:
# Fake a fast lead car, so mpc can keep running in the same mode
x_lead = 50.0
v_lead = v_ego + 10.0
a_lead = 0.0
a_lead_tau = _LEAD_ACCEL_TAU
# MPC will not converge if immediate crash is expected
# Clip lead distance to what is still possible to brake for
min_x_lead = ((v_ego + v_lead)/2) * (v_ego - v_lead) / (-ACCEL_MIN * 2)
x_lead = np.clip(x_lead, min_x_lead, 1e8)
v_lead = np.clip(v_lead, 0.0, 1e8)
a_lead = np.clip(a_lead, -10., 5.)
if a_lead < -2.0 and j_lead > 0.5:
a_lead = a_lead + j_lead
a_lead = min(a_lead, -0.5)
a_lead_tau = max(a_lead_tau, 1.5)
lead_xv = self.extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau, j_lead)
return lead_xv, v_lead
def set_accel_limits(self, min_a, max_a):
# TODO this sets a max accel limit, but the minimum limit is only for cruise decel
# needs refactor
self.cruise_min_a = min_a
self.max_a = max_a
def update(self, carrot, reset_state, radarstate, v_cruise, x, v, a, j, personality=log.LongitudinalPersonality.standard):
t_follow = carrot.get_T_FOLLOW(personality)
v_ego = self.x0[1]
a_ego = self.x0[2]
self.status = radarstate.leadOne.status or radarstate.leadTwo.status
if radarstate.leadOne.status:
j_lead = radarstate.leadOne.jLead
self.j_lead = j_lead * 0.1 + self.j_lead * 0.9
else:
self.j_lead = 0.0
lead_xv_0, lead_v_0 = self.process_lead(radarstate.leadOne, np.clip(self.j_lead * carrot.j_lead_factor, -1.0, 1.0))
lead_xv_1, _ = self.process_lead(radarstate.leadTwo, 0.0)
mode = self.mode
comfort_brake = carrot.comfort_brake
stop_distance = carrot.stop_distance
if mode == 'blended':
stop_x = 1000.0
else:
v_cruise, stop_x, mode = carrot.v_cruise, carrot.stop_dist, carrot.mode
desired_distance = desired_follow_distance(v_ego, lead_v_0, comfort_brake, stop_distance, t_follow)
t_follow = carrot.dynamic_t_follow(t_follow, radarstate.leadOne, desired_distance, self.prev_a)
# To estimate a safe distance from a moving lead, we calculate how much stopping
# distance that lead needs as a minimum. We can add that to the current distance
# and then treat that as a stopped car/obstacle at this new distance.
lead_0_obstacle = lead_xv_0[:,0] + get_stopped_equivalence_factor(lead_xv_0[:,1])
lead_1_obstacle = lead_xv_1[:,0] + get_stopped_equivalence_factor(lead_xv_1[:,1])
self.desired_distance = desired_follow_distance(v_ego, lead_v_0, comfort_brake, stop_distance, t_follow)
self.params[:,0] = ACCEL_MIN if not reset_state else a_ego
# negative accel constraint causes problems because negative speed is not allowed
self.params[:,1] = max(0.0, self.max_a if not reset_state else a_ego)
# Update in ACC mode or ACC/e2e blend
if mode == 'acc':
#self.params[:,5] = LEAD_DANGER_FACTOR
# Fake an obstacle for cruise, this ensures smooth acceleration to set speed
# when the leads are no factor.
v_lower = v_ego + (T_IDXS * self.cruise_min_a * 1.05)
# TODO does this make sense when max_a is negative?
v_upper = v_ego + (T_IDXS * self.max_a * 1.05)
v_cruise_clipped = np.clip(v_cruise * np.ones(N+1),
v_lower,
v_upper)
cruise_obstacle = np.cumsum(T_DIFFS * v_cruise_clipped) + get_safe_obstacle_distance(v_cruise_clipped, t_follow, comfort_brake, stop_distance)
adjust_dist = carrot.trafficStopDistanceAdjust if v_ego > 0.1 else -2.0
if 50 < stop_x + adjust_dist < cruise_obstacle[0]:
stop_x = cruise_obstacle[0] - adjust_dist
x2 = stop_x * np.ones(N+1) + adjust_dist
x_obstacles = np.column_stack([lead_0_obstacle, lead_1_obstacle, cruise_obstacle, x2])
self.source = SOURCES[np.argmin(x_obstacles[0])]
if v_cruise == 0 and self.source == 'cruise':
self.params[:,0] = - carrot.autoNaviSpeedDecelRate
#elif self.source in ['cruise', 'e2e']:
# self.params[:,0] = - COMFORT_BRAKE
# These are not used in ACC mode
x[:], v[:], a[:], j[:] = 0.0, 0.0, 0.0, 0.0
if radarstate.leadOne.status:
self.a_change_cost = np.interp(abs(self.j_lead), [0.3, 2.0], [A_CHANGE_COST, 20])
else:
self.a_change_cost = A_CHANGE_COST
#safe_distance = lead_0_obstacle[0] - get_safe_obstacle_distance(v_ego, comfort_brake, stop_distance)
self.lead_danger_factor = LEAD_DANGER_FACTOR #np.interp(safe_distance, [-30.0, 0.0], [0.9, LEAD_DANGER_FACTOR]) # 鞚搓备鞝侅毄頃橂媹, 靷碃氚╈韯± 臧愳啀鞁œ 雱堧 旮夓爼瓯绊晿電旉矁 臧欖潓.
self.params[:,5] = self.lead_danger_factor
elif mode == 'blended':
self.params[:,5] = 1.0
x_obstacles = np.column_stack([lead_0_obstacle,
lead_1_obstacle])
cruise_target = T_IDXS * np.clip(v_cruise, v_ego - 2.0, 1e3) + x[0]
xforward = ((v[1:] + v[:-1]) / 2) * (T_IDXS[1:] - T_IDXS[:-1])
x = np.cumsum(np.insert(xforward, 0, x[0]))
x_and_cruise = np.column_stack([x, cruise_target])
x = np.min(x_and_cruise, axis=1)
self.source = 'e2e' if x_and_cruise[1,0] < x_and_cruise[1,1] else 'cruise'
else:
raise NotImplementedError(f'Planner mode {self.mode} not recognized in planner update')
self.yref[:,1] = x
self.yref[:,2] = v
self.yref[:,3] = a
self.yref[:,5] = j
for i in range(N):
self.solver.set(i, "yref", self.yref[i])
self.solver.set(N, "yref", self.yref[N][:COST_E_DIM])
self.params[:,2] = np.min(x_obstacles, axis=1)
self.params[:,3] = np.copy(self.prev_a)
self.params[:,4] = t_follow
self.params[:,6] = comfort_brake
self.params[:,7] = stop_distance
self.t_follow = t_follow
self.run()
if (np.any(lead_xv_0[FCW_IDXS,0] - self.x_sol[FCW_IDXS,0] < CRASH_DISTANCE) and
radarstate.leadOne.modelProb > 0.9):
self.crash_cnt += 1
else:
self.crash_cnt = 0
# Check if it got within lead comfort range
# TODO This should be done cleaner
if self.mode == 'blended':
if any((lead_0_obstacle - get_safe_obstacle_distance(self.x_sol[:,1], t_follow, comfort_brake, stop_distance))- self.x_sol[:,0] < 0.0):
self.source = 'lead0'
if any((lead_1_obstacle - get_safe_obstacle_distance(self.x_sol[:,1], t_follow, comfort_brake, stop_distance))- self.x_sol[:,0] < 0.0) and \
(lead_1_obstacle[0] - lead_0_obstacle[0]):
self.source = 'lead1'
def run(self):
# t0 = time.monotonic()
# reset = 0
for i in range(N+1):
self.solver.set(i, 'p', self.params[i])
self.solver.constraints_set(0, "lbx", self.x0)
self.solver.constraints_set(0, "ubx", self.x0)
self.solution_status = self.solver.solve()
self.solve_time = float(self.solver.get_stats('time_tot')[0])
self.time_qp_solution = float(self.solver.get_stats('time_qp')[0])
self.time_linearization = float(self.solver.get_stats('time_lin')[0])
self.time_integrator = float(self.solver.get_stats('time_sim')[0])
# qp_iter = self.solver.get_stats('statistics')[-1][-1] # SQP_RTI specific
# print(f"long_mpc timings: tot {self.solve_time:.2e}, qp {self.time_qp_solution:.2e}, lin {self.time_linearization:.2e}, \
# integrator {self.time_integrator:.2e}, qp_iter {qp_iter}")
# res = self.solver.get_residuals()
# print(f"long_mpc residuals: {res[0]:.2e}, {res[1]:.2e}, {res[2]:.2e}, {res[3]:.2e}")
# self.solver.print_statistics()
for i in range(N+1):
self.x_sol[i] = self.solver.get(i, 'x')
for i in range(N):
self.u_sol[i] = self.solver.get(i, 'u')
self.v_solution = self.x_sol[:,1]
self.a_solution = self.x_sol[:,2]
self.j_solution = self.u_sol[:,0]
self.prev_a = np.interp(T_IDXS + self.dt, T_IDXS, self.a_solution)
t = time.monotonic()
if self.solution_status != 0:
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning(f"Long mpc reset, solution_status: {self.solution_status}")
self.reset()
# reset = 1
# print(f"long_mpc timings: total internal {self.solve_time:.2e}, external: {(time.monotonic() - t0):.2e} qp {self.time_qp_solution:.2e}, \
# lin {self.time_linearization:.2e} qp_iter {qp_iter}, reset {reset}")
if __name__ == "__main__":
ocp = gen_long_ocp()
AcadosOcpSolver.generate(ocp, json_file=JSON_FILE)
# AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)

View File

@@ -0,0 +1,283 @@
#!/usr/bin/env python3
import math
import numpy as np
import cereal.messaging as messaging
from opendbc.car.interfaces import ACCEL_MIN, ACCEL_MAX
from openpilot.common.conversions import Conversions as CV
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.realtime import DT_MDL
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc, N
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, get_speed_error, get_accel_from_plan
from openpilot.selfdrive.car.cruise import V_CRUISE_MAX, V_CRUISE_UNSET
from openpilot.common.swaglog import cloudlog
from openpilot.common.params import Params
LON_MPC_STEP = 0.2 # first step is 0.2s
A_CRUISE_MIN = -2.0 #-1.2
A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6]
A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
CONTROL_N_T_IDX = ModelConstants.T_IDXS[:CONTROL_N]
ALLOW_THROTTLE_THRESHOLD = 0.5
MIN_ALLOW_THROTTLE_SPEED = 2.5
# Lookup table for turns
_A_TOTAL_MAX_V = [2.4, 4.8] #[1.7, 3.2]
_A_TOTAL_MAX_BP = [20., 40.]
LAT_WEIGHT = 0.7
def get_max_accel(v_ego):
return np.interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
def get_coast_accel(pitch):
return np.sin(pitch) * -5.65 - 0.3 # fitted from data using xx/projects/allow_throttle/compute_coast_accel.py
def limit_accel_in_turns_org(v_ego, angle_steers, a_target, CP):
"""
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
this should avoid accelerating when losing the target in turns
"""
# FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
# The lookup table for turns should also be updated if we do this
steer_abs = abs(angle_steers)
if v_ego > 20 or (v_ego > 25 and steer_abs < 3.0):
return a_target
a_total_max = np.interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase) * LAT_WEIGHT
a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
return [a_target[0], min(a_target[1], a_x_allowed)]
def limit_accel_in_turns(v_ego, curvature, a_target, a_lat_max):
"""
v_ego : m/s
curvature: 1/m (조향에서 이미 나온 곡률, sign 포함)
a_target : [a_min, a_max]
a_lat_max: 허용 최대 횡가속 (예: 6.0 ~ 8.0 m/s^2)
return : [a_min, 제한된 a_max]
"""
# 아주 저속이면 굳이 제한 안 걸어도 됨
if v_ego < 0.1 or a_lat_max <= 0.0:
return a_target
# 횡가속
a_y = v_ego * v_ego * curvature # m/s^2
a_y_abs = abs(a_y)
a_lat_max_abs = abs(a_lat_max)
# a_total^2 = a_x^2 + a_y^2 <= a_lat_max^2 라고 보고,
# 남은 a_x 여유를 계산
if a_y_abs >= a_lat_max_abs:
a_x_allowed = 0.0
else:
a_x_allowed = math.sqrt(a_lat_max_abs**2 - a_y_abs**2)
# a_target = [min, max] 중에서 max만 줄여줌
return [a_target[0], min(a_target[1], a_x_allowed)]
class LongitudinalPlanner:
def __init__(self, CP, init_v=0.0, init_a=0.0, dt=DT_MDL):
self.CP = CP
self.mpc = LongitudinalMpc(dt=dt)
self.fcw = False
self.dt = dt
self.allow_throttle = True
self.a_desired = init_a
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, self.dt)
self.prev_accel_clip = [ACCEL_MIN, ACCEL_MAX]
self.output_a_target = 0.0
self.output_v_target_now = 0.0
self.output_j_target_now = 0.0
self.output_should_stop = False
self.v_desired_trajectory = np.zeros(CONTROL_N)
self.a_desired_trajectory = np.zeros(CONTROL_N)
self.j_desired_trajectory = np.zeros(CONTROL_N)
self.solverExecutionTime = 0.0
self.vCluRatio = 1.0
self.v_cruise_kph = 0.0
self.params = Params()
@staticmethod
def parse_model(model_msg):
if (len(model_msg.position.x) == ModelConstants.IDX_N and
len(model_msg.velocity.x) == ModelConstants.IDX_N and
len(model_msg.acceleration.x) == ModelConstants.IDX_N):
x = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.position.x)
v = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.velocity.x)
a = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.acceleration.x)
j = np.zeros(len(T_IDXS_MPC))
else:
x = np.zeros(len(T_IDXS_MPC))
v = np.zeros(len(T_IDXS_MPC))
a = np.zeros(len(T_IDXS_MPC))
j = np.zeros(len(T_IDXS_MPC))
if len(model_msg.meta.disengagePredictions.gasPressProbs) > 1:
throttle_prob = model_msg.meta.disengagePredictions.gasPressProbs[1]
else:
throttle_prob = 1.0
return x, v, a, j, throttle_prob
def update(self, sm, carrot):
self.mpc.mode = 'blended' if sm['selfdriveState'].experimentalMode else 'acc'
if len(sm['carControl'].orientationNED) == 3:
accel_coast = get_coast_accel(sm['carControl'].orientationNED[1])
else:
accel_coast = ACCEL_MAX
v_ego = sm['carState'].vEgo
v_cruise_kph = min(sm['carState'].vCruise, V_CRUISE_MAX)
self.v_cruise_kph = carrot.update(sm, v_cruise_kph, self.mpc.mode)
self.mpc.mode = carrot.mode
v_cruise = self.v_cruise_kph * CV.KPH_TO_MS
vCluRatio = sm['carState'].vCluRatio
if vCluRatio > 0.5:
self.vCluRatio = vCluRatio
v_cruise *= vCluRatio
v_cruise_initialized = sm['carState'].vCruise != V_CRUISE_UNSET
long_control_off = sm['controlsState'].longControlState == LongCtrlState.off
force_slow_decel = sm['controlsState'].forceDecel
# Reset current state when not engaged, or user is controlling the speed
reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['selfdriveState'].enabled
# PCM cruise speed may be updated a few cycles later, check if initialized
reset_state = reset_state or not v_cruise_initialized or carrot.soft_hold_active
# No change cost when user is controlling the speed, or when standstill
prev_accel_constraint = not (reset_state or sm['carState'].standstill)
if self.mpc.mode == 'acc':
#accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
accel_limits = [A_CRUISE_MIN, carrot.get_carrot_accel(v_ego)]
steer_angle_without_offset = sm['carState'].steeringAngleDeg - sm['liveParameters'].angleOffsetDeg
#accel_limits_turns = limit_accel_in_turns(v_ego, steer_angle_without_offset, accel_limits, self.CP)
a_lat_max = 4.0
accel_limits_turns = limit_accel_in_turns(v_ego, sm['controlsState'].desiredCurvature, accel_limits, a_lat_max)
else:
accel_limits = [ACCEL_MIN, ACCEL_MAX]
accel_limits_turns = [ACCEL_MIN, ACCEL_MAX]
if reset_state:
self.v_desired_filter.x = v_ego
# Clip aEgo to cruise limits to prevent large accelerations when becoming active
self.a_desired = np.clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1])
self.mpc.prev_a = np.full(N+1, self.a_desired) ## carrot
accel_limits_turns[0] = accel_limits_turns[0] = 0.0 ## carrot
# Prevent divergence, smooth in current v_ego
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
x, v, a, j, throttle_prob = self.parse_model(sm['modelV2'])
# Don't clip at low speeds since throttle_prob doesn't account for creep
if self.params.get_int("CommaLongAcc") > 0:
self.allow_throttle = throttle_prob > ALLOW_THROTTLE_THRESHOLD or v_ego <= MIN_ALLOW_THROTTLE_SPEED
else:
self.allow_throttle = True
if not self.allow_throttle:
clipped_accel_coast = max(accel_coast, accel_limits_turns[0])
clipped_accel_coast_interp = np.interp(v_ego, [MIN_ALLOW_THROTTLE_SPEED, MIN_ALLOW_THROTTLE_SPEED*2], [accel_limits_turns[1], clipped_accel_coast])
accel_limits_turns[1] = min(accel_limits_turns[1], clipped_accel_coast_interp)
if force_slow_decel:
v_cruise = 0.0
# clip limits, cannot init MPC outside of bounds
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05)
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
self.mpc.set_weights(prev_accel_constraint, personality=sm['selfdriveState'].personality, jerk_factor = carrot.jerk_factor_apply, a_change_cost_starting = carrot.aChangeCostStarting)
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
self.mpc.update(carrot, reset_state, sm['radarState'], v_cruise, x, v, a, j, personality=sm['selfdriveState'].personality)
self.v_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC, self.mpc.v_solution)
self.a_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC, self.mpc.a_solution)
self.j_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC[:-1], self.mpc.j_solution)
# TODO counter is only needed because radar is glitchy, remove once radar is gone
self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill and not reset_state
if self.fcw:
cloudlog.info("FCW triggered")
# Interpolate 0.05 seconds and save as starting point for next iteration
a_prev = self.a_desired
self.a_desired = float(np.interp(self.dt, CONTROL_N_T_IDX, self.a_desired_trajectory))
self.v_desired_filter.x = self.v_desired_filter.x + self.dt * (self.a_desired + a_prev) / 2.0
longitudinalActuatorDelay = self.params.get_float("LongActuatorDelay")*0.01
vEgoStopping = self.params.get_float("VEgoStopping") * 0.01
action_t = longitudinalActuatorDelay + DT_MDL
output_a_target_mpc, output_should_stop_mpc, output_v_target_mpc, _ = get_accel_from_plan(self.v_desired_trajectory, self.a_desired_trajectory, CONTROL_N_T_IDX,
action_t=action_t, vEgoStopping=vEgoStopping)
output_a_target_e2e = sm['modelV2'].action.desiredAcceleration
output_should_stop_e2e = sm['modelV2'].action.shouldStop
output_v_target_now_e2e = sm['modelV2'].action.desiredVelocity
if self.mpc.mode == 'acc':
output_a_target = output_a_target_mpc
output_v_target_now = output_v_target_mpc
self.output_should_stop = output_should_stop_mpc
else:
output_a_target = min(output_a_target_mpc, output_a_target_e2e)
output_v_target_now = min(output_v_target_mpc, output_v_target_now_e2e)
self.output_should_stop = output_should_stop_e2e or output_should_stop_mpc
#for idx in range(2):
# accel_clip[idx] = np.clip(accel_clip[idx], self.prev_accel_clip[idx] - 0.05, self.prev_accel_clip[idx] + 0.05)
#self.output_a_target = np.clip(output_a_target, accel_clip[0], accel_clip[1])
#self.prev_accel_clip = accel_clip
self.output_a_target = output_a_target
self.output_v_target_now = output_v_target_now
self.output_j_target_now = self.j_desired_trajectory[0]
def publish(self, sm, pm, carrot):
plan_send = messaging.new_message('longitudinalPlan')
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'selfdriveState'])
longitudinalPlan = plan_send.longitudinalPlan
longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
longitudinalPlan.solverExecutionTime = self.mpc.solve_time
longitudinalPlan.speeds = self.v_desired_trajectory.tolist()
longitudinalPlan.accels = self.a_desired_trajectory.tolist()
longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
longitudinalPlan.longitudinalPlanSource = self.mpc.source
longitudinalPlan.fcw = self.fcw
longitudinalPlan.aTarget = float(self.output_a_target)
longitudinalPlan.vTargetNow = float(self.output_v_target_now)
longitudinalPlan.jTargetNow = float(self.output_j_target_now)
longitudinalPlan.shouldStop = bool(self.output_should_stop)
longitudinalPlan.allowBrake = True
longitudinalPlan.allowThrottle = bool(self.allow_throttle)
longitudinalPlan.xState = carrot.xState.value
longitudinalPlan.trafficState = carrot.trafficState.value
longitudinalPlan.cruiseTarget = self.v_cruise_kph
longitudinalPlan.tFollow = float(self.mpc.t_follow)
longitudinalPlan.desiredDistance = float(self.mpc.desired_distance)
longitudinalPlan.events = carrot.events.to_msg()
longitudinalPlan.myDrivingMode = carrot.myDrivingMode.value
pm.send('longitudinalPlan', plan_send)

View File

View File

@@ -0,0 +1,47 @@
from parameterized import parameterized
from cereal import car, log
from opendbc.car.car_helpers import interfaces
from opendbc.car.honda.values import CAR as HONDA
from opendbc.car.toyota.values import CAR as TOYOTA
from opendbc.car.nissan.values import CAR as NISSAN
from opendbc.car.vehicle_model import VehicleModel
from openpilot.selfdrive.controls.lib.latcontrol_pid import LatControlPID
from openpilot.selfdrive.controls.lib.latcontrol_torque import LatControlTorque
from openpilot.selfdrive.controls.lib.latcontrol_angle import LatControlAngle
from openpilot.selfdrive.locationd.helpers import Pose
from openpilot.common.mock.generators import generate_livePose
class TestLatControl:
@parameterized.expand([(HONDA.HONDA_CIVIC, LatControlPID), (TOYOTA.TOYOTA_RAV4, LatControlTorque), (NISSAN.NISSAN_LEAF, LatControlAngle)])
def test_saturation(self, car_name, controller):
CarInterface, CarController, CarState, RadarInterface = interfaces[car_name]
CP = CarInterface.get_non_essential_params(car_name)
CI = CarInterface(CP, CarController, CarState)
VM = VehicleModel(CP)
controller = controller(CP.as_reader(), CI)
CS = car.CarState.new_message()
CS.vEgo = 30
CS.steeringPressed = False
params = log.LiveParametersData.new_message()
lp = generate_livePose()
pose = Pose.from_live_pose(lp.livePose)
# Saturate for curvature limited and controller limited
for _ in range(1000):
_, _, lac_log = controller.update(True, CS, VM, params, False, 0, pose, True)
assert lac_log.saturated
for _ in range(1000):
_, _, lac_log = controller.update(True, CS, VM, params, False, 0, pose, False)
assert not lac_log.saturated
for _ in range(1000):
_, _, lac_log = controller.update(True, CS, VM, params, False, 1, pose, False)
assert lac_log.saturated