Release 260111
This commit is contained in:
138
selfdrive/controls/lib/drive_helpers.py
Normal file
138
selfdrive/controls/lib/drive_helpers.py
Normal file
@@ -0,0 +1,138 @@
|
||||
import numpy as np
|
||||
from cereal import log
|
||||
from opendbc.car.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
|
||||
from openpilot.common.realtime import DT_CTRL, DT_MDL
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
import numpy as np
|
||||
|
||||
MIN_SPEED = 1.0
|
||||
CONTROL_N = 17
|
||||
CAR_ROTATION_RADIUS = 0.0
|
||||
# This is a turn radius smaller than most cars can achieve
|
||||
MAX_CURVATURE = 0.2
|
||||
MAX_VEL_ERR = 5.0 # m/s
|
||||
|
||||
# EU guidelines
|
||||
MAX_LATERAL_JERK = 5.0 # m/s^3
|
||||
MAX_LATERAL_ACCEL_NO_ROLL = 3.0 # m/s^2
|
||||
MAX_CURVATURE_DELTA_FRAME = 0.03 #0.019 # about 3 degree / DT_CTRL
|
||||
|
||||
def apply_deadzone(error, deadzone):
|
||||
if error > deadzone:
|
||||
error -= deadzone
|
||||
elif error < - deadzone:
|
||||
error += deadzone
|
||||
else:
|
||||
error = 0.
|
||||
return error
|
||||
|
||||
def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, steer_actuator_delay, distances):
|
||||
if len(psis) != CONTROL_N:
|
||||
psis = [0.0]*CONTROL_N
|
||||
curvatures = [0.0]*CONTROL_N
|
||||
distances = [0.0] * CONTROL_N
|
||||
v_ego = max(MIN_SPEED, v_ego)
|
||||
|
||||
# TODO this needs more thought, use .2s extra for now to estimate other delays
|
||||
delay = max(0.01, steer_actuator_delay)
|
||||
|
||||
# MPC can plan to turn the wheel and turn back before t_delay. This means
|
||||
# in high delay cases some corrections never even get commanded. So just use
|
||||
# psi to calculate a simple linearization of desired curvature
|
||||
current_curvature_desired = curvatures[0]
|
||||
delayed_curvature_desired = np.interp(delay, ModelConstants.T_IDXS[:CONTROL_N], curvatures)
|
||||
future_curvature_desired = np.interp(1.2, ModelConstants.T_IDXS[:CONTROL_N], curvatures)
|
||||
|
||||
psi = np.interp(delay, ModelConstants.T_IDXS[:CONTROL_N], psis)
|
||||
|
||||
distance = max(np.interp(delay, ModelConstants.T_IDXS[:CONTROL_N], distances), 0.001)
|
||||
#average_curvature_desired = psi / (v_ego * delay)
|
||||
|
||||
# curve -> straight or reverse curve
|
||||
if v_ego > 5 and abs(current_curvature_desired) > 0.002 and \
|
||||
(abs(future_curvature_desired) < 0.001 or np.sign(current_curvature_desired) != np.sign(future_curvature_desired)):
|
||||
psis_damping = 0.2
|
||||
else:
|
||||
psis_damping = 1.0
|
||||
#psi *= psis_damping
|
||||
|
||||
|
||||
average_curvature_desired = psi / distance
|
||||
desired_curvature = 2 * average_curvature_desired - current_curvature_desired
|
||||
|
||||
# This is the "desired rate of the setpoint" not an actual desired rate
|
||||
max_curvature_rate = MAX_LATERAL_JERK / (v_ego**2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755
|
||||
safe_desired_curvature = np.clip(desired_curvature,
|
||||
current_curvature_desired - max_curvature_rate * DT_MDL,
|
||||
current_curvature_desired + max_curvature_rate * DT_MDL)
|
||||
return safe_desired_curvature
|
||||
|
||||
def clamp(val, min_val, max_val):
|
||||
clamped_val = float(np.clip(val, min_val, max_val))
|
||||
return clamped_val, clamped_val != val
|
||||
|
||||
def smooth_value(val, prev_val, tau, dt=DT_MDL):
|
||||
alpha = 1 - np.exp(-dt/tau) if tau > 0 else 1
|
||||
return alpha * val + (1 - alpha) * prev_val
|
||||
|
||||
def clip_curvature(v_ego, prev_curvature, new_curvature, roll):
|
||||
# This function respects ISO lateral jerk and acceleration limits + a max curvature
|
||||
v_ego = max(v_ego, MIN_SPEED)
|
||||
max_curvature_rate = MAX_LATERAL_JERK / (v_ego ** 2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755
|
||||
new_curvature = np.clip(new_curvature,
|
||||
prev_curvature - max_curvature_rate * DT_CTRL,
|
||||
prev_curvature + max_curvature_rate * DT_CTRL)
|
||||
|
||||
roll_compensation = roll * ACCELERATION_DUE_TO_GRAVITY
|
||||
max_lat_accel = MAX_LATERAL_ACCEL_NO_ROLL + roll_compensation
|
||||
min_lat_accel = -MAX_LATERAL_ACCEL_NO_ROLL + roll_compensation
|
||||
new_curvature, limited_accel = clamp(new_curvature, min_lat_accel / v_ego ** 2, max_lat_accel / v_ego ** 2)
|
||||
|
||||
new_curvature, limited_max_curv = clamp(new_curvature, -MAX_CURVATURE, MAX_CURVATURE)
|
||||
|
||||
new_curvature = np.clip(
|
||||
new_curvature,
|
||||
prev_curvature - MAX_CURVATURE_DELTA_FRAME,
|
||||
prev_curvature + MAX_CURVATURE_DELTA_FRAME
|
||||
)
|
||||
|
||||
was_limited = limited_accel or limited_max_curv or (abs(new_curvature - prev_curvature) >= MAX_CURVATURE_DELTA_FRAME)
|
||||
|
||||
return float(new_curvature), was_limited
|
||||
|
||||
def get_speed_error(modelV2: log.ModelDataV2, v_ego: float) -> float:
|
||||
# ToDo: Try relative error, and absolute speed
|
||||
if len(modelV2.temporalPose.trans):
|
||||
vel_err = np.clip(modelV2.temporalPose.trans[0] - v_ego, -MAX_VEL_ERR, MAX_VEL_ERR)
|
||||
return float(vel_err)
|
||||
return 0.0
|
||||
|
||||
|
||||
def get_accel_from_plan(speeds, accels, t_idxs, action_t=DT_MDL, vEgoStopping=0.05):
|
||||
if len(speeds) == len(t_idxs):
|
||||
v_now = speeds[0]
|
||||
a_now = accels[0]
|
||||
v_target = np.interp(action_t, t_idxs, speeds)
|
||||
a_target = 2 * (v_target - v_now) / (action_t) - a_now
|
||||
v_target_1sec = np.interp(action_t + 1.0, t_idxs, speeds)
|
||||
v_max = np.max(speeds)
|
||||
else:
|
||||
v_now = 0.0
|
||||
a_now = 0.0
|
||||
v_target = 0.0
|
||||
v_target_1sec = 0.0
|
||||
a_target = 0.0
|
||||
v_max = 0.0
|
||||
should_stop = (v_target < vEgoStopping and
|
||||
v_target_1sec < vEgoStopping)
|
||||
return a_target, should_stop, v_now, v_max #v_target #v_now
|
||||
|
||||
def curv_from_psis(psi_target, psi_rate, vego, action_t):
|
||||
vego = np.clip(vego, MIN_SPEED, np.inf)
|
||||
curv_from_psi = psi_target / (vego * action_t)
|
||||
return 2*curv_from_psi - psi_rate / vego
|
||||
|
||||
def get_curvature_from_plan(yaws, yaw_rates, t_idxs, vego, action_t):
|
||||
psi_target = np.interp(action_t, t_idxs, yaws)
|
||||
psi_rate = yaw_rates[0]
|
||||
return curv_from_psis(psi_target, psi_rate, vego, action_t)
|
||||
Reference in New Issue
Block a user