Release 260111
This commit is contained in:
347
selfdrive/controls/lib/lateral_planner.py
Normal file
347
selfdrive/controls/lib/lateral_planner.py
Normal file
@@ -0,0 +1,347 @@
|
||||
import time
|
||||
import numpy as np
|
||||
from openpilot.common.realtime import DT_MDL
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
|
||||
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N
|
||||
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED, get_speed_error
|
||||
# from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
|
||||
import cereal.messaging as messaging
|
||||
from cereal import log
|
||||
|
||||
from openpilot.common.params import Params
|
||||
#from openpilot.selfdrive.controls.lib.lane_planner import LanePlanner
|
||||
from openpilot.selfdrive.controls.lib.lane_planner_2 import LanePlanner
|
||||
from collections import deque
|
||||
|
||||
TRAJECTORY_SIZE = 33
|
||||
#CAMERA_OFFSET = 0.04
|
||||
|
||||
|
||||
PATH_COST = 1.0
|
||||
LATERAL_MOTION_COST = 0.11
|
||||
LATERAL_ACCEL_COST = 0.0
|
||||
LATERAL_JERK_COST = 0.04
|
||||
# Extreme steering rate is unpleasant, even
|
||||
# when it does not cause bad jerk.
|
||||
# TODO this cost should be lowered when low
|
||||
# speed lateral control is stable on all cars
|
||||
STEERING_RATE_COST = 700.0
|
||||
|
||||
|
||||
class LateralPlanner:
|
||||
def __init__(self, CP, debug=False):
|
||||
#self.DH = DesireHelper()
|
||||
|
||||
# Vehicle model parameters used to calculate lateral movement of car
|
||||
self.factor1 = CP.wheelbase - CP.centerToFront
|
||||
self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase * CP.tireStiffnessRear)
|
||||
self.last_cloudlog_t = 0
|
||||
self.solution_invalid_cnt = 0
|
||||
|
||||
self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
|
||||
self.velocity_xyz = np.zeros((TRAJECTORY_SIZE, 3))
|
||||
self.v_plan = np.zeros((TRAJECTORY_SIZE,))
|
||||
self.x_sol = np.zeros((TRAJECTORY_SIZE, 4), dtype=np.float32)
|
||||
self.v_ego = MIN_SPEED
|
||||
self.l_lane_change_prob = 0.0
|
||||
self.r_lane_change_prob = 0.0
|
||||
|
||||
self.debug_mode = debug
|
||||
|
||||
self.params = Params()
|
||||
|
||||
self.latDebugText = ""
|
||||
# lane_mode
|
||||
self.LP = LanePlanner()
|
||||
self.readParams = 0
|
||||
self.lanelines_active = False
|
||||
self.lanelines_active_tmp = False
|
||||
|
||||
self.useLaneLineSpeedApply = self.params.get_int("UseLaneLineSpeed")
|
||||
self.pathOffset = float(self.params.get_int("PathOffset")) * 0.01
|
||||
self.useLaneLineMode = False
|
||||
self.plan_a = np.zeros((TRAJECTORY_SIZE, ))
|
||||
self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
|
||||
self.plan_yaw_rate = np.zeros((TRAJECTORY_SIZE,))
|
||||
self.t_idxs = np.arange(TRAJECTORY_SIZE)
|
||||
self.y_pts = np.zeros((TRAJECTORY_SIZE,))
|
||||
self.d_path_w_lines_xyz = np.zeros((TRAJECTORY_SIZE, 3))
|
||||
|
||||
self.lat_mpc = LateralMpc()
|
||||
self.reset_mpc(np.zeros(4))
|
||||
self.curve_speed = 0
|
||||
self.lanemode_possible_count = 0
|
||||
self.laneless_only = True
|
||||
|
||||
def reset_mpc(self, x0=None):
|
||||
if x0 is None:
|
||||
x0 = np.zeros(4)
|
||||
self.x0 = x0
|
||||
self.lat_mpc.reset(x0=self.x0)
|
||||
|
||||
def update(self, sm, carrot):
|
||||
global LATERAL_ACCEL_COST, LATERAL_JERK_COST, STEERING_RATE_COST
|
||||
self.readParams -= 1
|
||||
if self.readParams <= 0:
|
||||
self.readParams = 100
|
||||
self.useLaneLineSpeedApply = sm['carState'].useLaneLineSpeed
|
||||
self.pathOffset = float(self.params.get_int("PathOffset")) * 0.01
|
||||
self.lateralPathCost = self.params.get_float("LatMpcPathCost") * 0.01
|
||||
self.lateralMotionCost = self.params.get_float("LatMpcMotionCost") * 0.01
|
||||
LATERAL_ACCEL_COST = self.params.get_float("LatMpcAccelCost") * 0.01
|
||||
LATERAL_JERK_COST = self.params.get_float("LatMpcJerkCost") * 0.01
|
||||
STEERING_RATE_COST = self.params.get_float("LatMpcSteeringRateCost")
|
||||
|
||||
# clip speed , lateral planning is not possible at 0 speed
|
||||
measured_curvature = sm['controlsState'].curvature
|
||||
v_ego_car = max(sm['carState'].vEgo, MIN_SPEED)
|
||||
speed_kph = v_ego_car * 3.6
|
||||
self.v_ego = v_ego_car
|
||||
self.curve_speed = sm['carrotMan'].vTurnSpeed
|
||||
|
||||
# Parse model predictions
|
||||
md = sm['modelV2']
|
||||
model_active = False
|
||||
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
|
||||
model_active = True
|
||||
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
|
||||
self.t_idxs = np.array(md.position.t)
|
||||
self.plan_yaw = np.array(md.orientation.z)
|
||||
self.plan_yaw_rate = np.array(md.orientationRate.z)
|
||||
self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z])
|
||||
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car)
|
||||
self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf)
|
||||
self.v_ego = self.v_plan[0]
|
||||
self.plan_a = np.array(md.acceleration.x)
|
||||
if md.velocity.x[-1] < md.velocity.x[0] * 0.7: # TODO: 모델이 감속을 요청하는 경우 속도테이블이 레인모드를 할수 없음. 속도테이블을 새로 만들어야함..
|
||||
self.lanemode_possible_count = 0
|
||||
self.laneless_only = True
|
||||
else:
|
||||
self.lanemode_possible_count += 1
|
||||
if self.lanemode_possible_count > int(1/DT_MDL):
|
||||
self.laneless_only = False
|
||||
|
||||
# Parse model predictions
|
||||
self.LP.parse_model(md)
|
||||
#lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
|
||||
#self.DH.update(sm['carState'], md, sm['carControl'].latActive, lane_change_prob, sm)
|
||||
|
||||
if self.useLaneLineSpeedApply == 0 or self.laneless_only:
|
||||
self.useLaneLineMode = False
|
||||
elif speed_kph >= self.useLaneLineSpeedApply + 2:
|
||||
self.useLaneLineMode = True
|
||||
elif speed_kph < self.useLaneLineSpeedApply - 2:
|
||||
self.useLaneLineMode = False
|
||||
|
||||
# Turn off lanes during lane change
|
||||
#if self.DH.desire == log.Desire.laneChangeRight or self.DH.desire == log.Desire.laneChangeLeft:
|
||||
|
||||
if md.meta.desire != log.Desire.none or carrot.atc_active:
|
||||
self.LP.lane_change_multiplier = 0.0 #md.meta.laneChangeProb
|
||||
else:
|
||||
self.LP.lane_change_multiplier = 1.0
|
||||
|
||||
# lanelines calculation?
|
||||
self.LP.lanefull_mode = self.useLaneLineMode
|
||||
self.LP.lane_width_left = md.meta.laneWidthLeft
|
||||
self.LP.lane_width_right = md.meta.laneWidthRight
|
||||
self.LP.curvature = measured_curvature
|
||||
self.path_xyz, self.lanelines_active = self.LP.get_d_path(sm['carState'], v_ego_car, self.t_idxs, self.path_xyz, self.curve_speed)
|
||||
|
||||
if self.lanelines_active:
|
||||
self.plan_yaw, self.plan_yaw_rate = yaw_from_path_no_scipy(
|
||||
self.path_xyz, self.v_plan,
|
||||
smooth_window=5,
|
||||
clip_rate=2.0,
|
||||
align_first_yaw=None #md.orientation.z[0] # 초기 정렬
|
||||
)
|
||||
|
||||
self.latDebugText = self.LP.debugText
|
||||
#self.lanelines_active = True if self.LP.d_prob > 0.3 and self.LP.lanefull_mode else False
|
||||
|
||||
self.path_xyz[:, 1] += self.pathOffset
|
||||
|
||||
self.lat_mpc.set_weights(self.lateralPathCost, self.lateralMotionCost,
|
||||
LATERAL_ACCEL_COST, LATERAL_JERK_COST,
|
||||
STEERING_RATE_COST)
|
||||
|
||||
y_pts = self.path_xyz[:LAT_MPC_N+1, 1]
|
||||
heading_pts = self.plan_yaw[:LAT_MPC_N+1]
|
||||
yaw_rate_pts = self.plan_yaw_rate[:LAT_MPC_N+1]
|
||||
self.y_pts = y_pts
|
||||
|
||||
assert len(y_pts) == LAT_MPC_N + 1
|
||||
assert len(heading_pts) == LAT_MPC_N + 1
|
||||
assert len(yaw_rate_pts) == LAT_MPC_N + 1
|
||||
lateral_factor = np.clip(self.factor1 - (self.factor2 * self.v_plan**2), 0.0, np.inf)
|
||||
p = np.column_stack([self.v_plan, lateral_factor])
|
||||
self.lat_mpc.run(self.x0,
|
||||
p,
|
||||
y_pts,
|
||||
heading_pts,
|
||||
yaw_rate_pts)
|
||||
# init state for next iteration
|
||||
# mpc.u_sol is the desired second derivative of psi given x0 curv state.
|
||||
# with x0[3] = measured_yaw_rate, this would be the actual desired yaw rate.
|
||||
# instead, interpolate x_sol so that x0[3] is the desired yaw rate for lat_control.
|
||||
self.x0[3] = np.interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3])
|
||||
|
||||
# Check for infeasible MPC solution
|
||||
mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any()
|
||||
t = time.monotonic()
|
||||
if mpc_nans or self.lat_mpc.solution_status != 0:
|
||||
self.reset_mpc()
|
||||
self.x0[3] = measured_curvature * self.v_ego
|
||||
if t > self.last_cloudlog_t + 5.0:
|
||||
self.last_cloudlog_t = t
|
||||
cloudlog.warning("Lateral mpc - nan: True")
|
||||
|
||||
if self.lat_mpc.cost > 1e6 or mpc_nans:
|
||||
self.solution_invalid_cnt += 1
|
||||
else:
|
||||
self.solution_invalid_cnt = 0
|
||||
|
||||
self.x_sol = self.lat_mpc.x_sol
|
||||
|
||||
def publish(self, sm, pm, carrot):
|
||||
plan_solution_valid = self.solution_invalid_cnt < 2
|
||||
plan_send = messaging.new_message('lateralPlan')
|
||||
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
|
||||
if not plan_send.valid:
|
||||
#print("lateralPlan_valid=", sm.valid)
|
||||
#print("lateralPlan_alive=", sm.alive)
|
||||
#print("lateralPlan_freq_ok=", sm.freq_ok)
|
||||
#print(sm.avg_freq)
|
||||
pass
|
||||
|
||||
lateralPlan = plan_send.lateralPlan
|
||||
lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
|
||||
lateralPlan.dPathPoints = self.y_pts.tolist()
|
||||
lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
|
||||
lateralPlan.distances = self.lat_mpc.x_sol[0:CONTROL_N, 0].tolist()
|
||||
|
||||
v_div = np.maximum(self.v_plan[:CONTROL_N], 6.0)
|
||||
if len(self.v_plan) == TRAJECTORY_SIZE:
|
||||
lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3] / v_div).tolist()
|
||||
else:
|
||||
lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3] / self.v_ego).tolist()
|
||||
|
||||
v_div2 = max(self.v_ego, 6.0)
|
||||
lateralPlan.curvatureRates = [float(x.item() / v_div2) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
|
||||
|
||||
lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
|
||||
lateralPlan.solverExecutionTime = self.lat_mpc.solve_time
|
||||
if self.debug_mode:
|
||||
lateralPlan.solverCost = self.lat_mpc.cost
|
||||
lateralPlan.solverState = log.LateralPlan.SolverState.new_message()
|
||||
lateralPlan.solverState.x = self.lat_mpc.x_sol.tolist()
|
||||
lateralPlan.solverState.u = self.lat_mpc.u_sol.flatten().tolist()
|
||||
|
||||
#lateralPlan.desire = self.DH.desire
|
||||
lateralPlan.useLaneLines = self.lanelines_active
|
||||
#lateralPlan.laneChangeState = self.DH.lane_change_state
|
||||
#lateralPlan.laneChangeDirection = self.DH.lane_change_direction
|
||||
lateralPlan.laneWidth = float(self.LP.lane_width)
|
||||
|
||||
#plan_send.lateralPlan.dPathWLinesX = [float(x) for x in self.d_path_w_lines_xyz[:, 0]]
|
||||
#plan_send.lateralPlan.dPathWLinesY = [float(y) for y in self.d_path_w_lines_xyz[:, 1]]
|
||||
#lateralPlan.laneWidthLeft = float(self.DH.lane_width_left)
|
||||
#lateralPlan.laneWidthRight = float(self.DH.lane_width_right)
|
||||
|
||||
lateralPlan.position.x = self.x_sol[:, 0].tolist()
|
||||
lateralPlan.position.y = self.x_sol[:, 1].tolist()
|
||||
lateralPlan.position.z = self.path_xyz[:, 2].tolist()
|
||||
#lateralPlan.distances = self.lat_mpc.x_sol[0:CONTROL_N, 0].tolist()
|
||||
|
||||
self.x_sol = self.lat_mpc.x_sol
|
||||
|
||||
debugText = (
|
||||
f"{'lanemode' if self.lanelines_active else 'laneless'} | " +
|
||||
f"{self.LP.lane_width_left:.1f}m | " +
|
||||
f"{self.LP.lane_width:.1f}m | " +
|
||||
f"{self.LP.lane_width_right:.1f}m | " +
|
||||
f"{f'offset={self.LP.offset_total * 100.0:.1f}cm turn={np.clip(self.curve_speed, -200, 200):.0f}km/h' if self.lanelines_active else ''}"
|
||||
)
|
||||
|
||||
lateralPlan.latDebugText = debugText
|
||||
#lateralPlan.latDebugText = self.latDebugText
|
||||
#lateralPlan.laneWidthLeft = float(self.DH.lane_width_left)
|
||||
#lateralPlan.laneWidthRight = float(self.DH.lane_width_right)
|
||||
#lateralPlan.distanceToRoadEdgeLeft = float(self.DH.distance_to_road_edge_left)
|
||||
#lateralPlan.distanceToRoadEdgeRight = float(self.DH.distance_to_road_edge_right)
|
||||
|
||||
pm.send('lateralPlan', plan_send)
|
||||
|
||||
|
||||
def smooth_moving_avg(arr, window=5):
|
||||
if window < 2:
|
||||
return arr
|
||||
if window % 2 == 0:
|
||||
window += 1
|
||||
pad = window // 2
|
||||
arr_pad = np.pad(arr, (pad, pad), mode='edge')
|
||||
kernel = np.ones(window) / window
|
||||
return np.convolve(arr_pad, kernel, mode='same')[pad:-pad]
|
||||
|
||||
def yaw_from_path_no_scipy(path_xyz, v_plan, smooth_window=5,
|
||||
clip_rate=2.0, align_first_yaw=None):
|
||||
|
||||
v0 = float(np.asarray(v_plan)[0]) if len(v_plan) else 0.0
|
||||
# 저속(≤6 m/s)에서는 창을 크게
|
||||
if v0 <= 6.0:
|
||||
smooth_window = max(smooth_window, 9) # 9~11 권장
|
||||
|
||||
N = path_xyz.shape[0]
|
||||
x = path_xyz[:, 0].astype(float)
|
||||
y = path_xyz[:, 1].astype(float)
|
||||
|
||||
if N < 5:
|
||||
return np.zeros(N, np.float32), np.zeros(N, np.float32)
|
||||
|
||||
# 1) s(호길이) 계산
|
||||
dx = np.diff(x)
|
||||
dy = np.diff(y)
|
||||
ds_seg = np.sqrt(dx*dx + dy*dy)
|
||||
ds_seg[ds_seg < 0.05] = 0.05
|
||||
s = np.zeros(N, float)
|
||||
s[1:] = np.cumsum(ds_seg)
|
||||
if s[-1] < 0.5: # 총 호길이 < 0.5m면 미분 결과 의미가 약함
|
||||
return np.zeros(N, np.float32), np.zeros(N, np.float32)
|
||||
|
||||
# 2) smoothing (이동평균)
|
||||
x_smooth = smooth_moving_avg(x, smooth_window)
|
||||
y_smooth = smooth_moving_avg(y, smooth_window)
|
||||
|
||||
# 3) 1·2차 도함수(s축 미분)
|
||||
dx_ds = np.gradient(x_smooth, s)
|
||||
dy_ds = np.gradient(y_smooth, s)
|
||||
d2x_ds2 = np.gradient(dx_ds, s)
|
||||
d2y_ds2 = np.gradient(dy_ds, s)
|
||||
|
||||
# 4) yaw = atan2(dy/ds, dx/ds)
|
||||
yaw = np.unwrap(np.arctan2(dy_ds, dx_ds))
|
||||
|
||||
# 5) 곡률 kappa = ...
|
||||
denom = (dx_ds*dx_ds + dy_ds*dy_ds)**1.5
|
||||
denom[denom < 1e-9] = 1e-9
|
||||
kappa = (dx_ds * d2y_ds2 - dy_ds * d2x_ds2) / denom
|
||||
|
||||
# 6) yaw_rate = kappa * v
|
||||
v = np.asarray(v_plan, float)
|
||||
yaw_rate = kappa * v
|
||||
if v0 <= 6.0:
|
||||
# 이동평균으로 미세 요동 감쇄(창 5~7)
|
||||
yaw_rate = smooth_moving_avg(yaw_rate, window=7)
|
||||
|
||||
# 7) 초기 yaw 정렬 (선택)
|
||||
if align_first_yaw is not None:
|
||||
bias = yaw[0] - float(align_first_yaw)
|
||||
yaw = yaw - bias
|
||||
|
||||
# 8) 안정화
|
||||
yaw = np.where(np.isfinite(yaw), yaw, 0.0)
|
||||
yaw_rate = np.where(np.isfinite(yaw_rate), yaw_rate, 0.0)
|
||||
yaw_rate = np.clip(yaw_rate, -abs(clip_rate), abs(clip_rate))
|
||||
|
||||
return yaw.astype(np.float32), yaw_rate.astype(np.float32)
|
||||
Reference in New Issue
Block a user