Release 260111

This commit is contained in:
Comma Device
2026-01-11 18:23:29 +08:00
commit 3721ecbf8a
2601 changed files with 855070 additions and 0 deletions

View File

View File

@@ -0,0 +1,40 @@
import pytest
import itertools
from parameterized import parameterized_class
from cereal import log
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import desired_follow_distance, get_T_FOLLOW
from openpilot.selfdrive.test.longitudinal_maneuvers.maneuver import Maneuver
def run_following_distance_simulation(v_lead, t_end=100.0, e2e=False, personality=0):
man = Maneuver(
'',
duration=t_end,
initial_speed=float(v_lead),
lead_relevancy=True,
initial_distance_lead=100,
speed_lead_values=[v_lead],
breakpoints=[0.],
e2e=e2e,
personality=personality,
)
valid, output = man.evaluate()
assert valid
return output[-1,2] - output[-1,1]
@parameterized_class(("e2e", "personality", "speed"), itertools.product(
[True, False], # e2e
[log.LongitudinalPersonality.relaxed, # personality
log.LongitudinalPersonality.standard,
log.LongitudinalPersonality.aggressive],
[0,10,35])) # speed
class TestFollowingDistance:
def test_following_distance(self):
v_lead = float(self.speed)
simulation_steady_state = run_following_distance_simulation(v_lead, e2e=self.e2e, personality=self.personality)
correct_steady_state = desired_follow_distance(v_lead, v_lead, get_T_FOLLOW(self.personality))
err_ratio = 0.2 if self.e2e else 0.1
assert simulation_steady_state == pytest.approx(correct_steady_state, abs=err_ratio * correct_steady_state + .5)

View File

@@ -0,0 +1,85 @@
import pytest
import numpy as np
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
from openpilot.selfdrive.controls.lib.drive_helpers import CAR_ROTATION_RADIUS
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N
def run_mpc(lat_mpc=None, v_ref=30., x_init=0., y_init=0., psi_init=0., curvature_init=0.,
lane_width=3.6, poly_shift=0.):
if lat_mpc is None:
lat_mpc = LateralMpc()
lat_mpc.set_weights(1., .1, 0.0, .05, 800)
y_pts = poly_shift * np.ones(LAT_MPC_N + 1)
heading_pts = np.zeros(LAT_MPC_N + 1)
curv_rate_pts = np.zeros(LAT_MPC_N + 1)
x0 = np.array([x_init, y_init, psi_init, curvature_init])
p = np.column_stack([v_ref * np.ones(LAT_MPC_N + 1),
CAR_ROTATION_RADIUS * np.ones(LAT_MPC_N + 1)])
# converge in no more than 10 iterations
for _ in range(10):
lat_mpc.run(x0, p,
y_pts, heading_pts, curv_rate_pts)
return lat_mpc.x_sol
class TestLateralMpc:
def _assert_null(self, sol, curvature=1e-6):
for i in range(len(sol)):
assert sol[0,i,1] == pytest.approx(0, abs=curvature)
assert sol[0,i,2] == pytest.approx(0, abs=curvature)
assert sol[0,i,3] == pytest.approx(0, abs=curvature)
def _assert_simmetry(self, sol, curvature=1e-6):
for i in range(len(sol)):
assert sol[0,i,1] == pytest.approx(-sol[1,i,1], abs=curvature)
assert sol[0,i,2] == pytest.approx(-sol[1,i,2], abs=curvature)
assert sol[0,i,3] == pytest.approx(-sol[1,i,3], abs=curvature)
assert sol[0,i,0] == pytest.approx(sol[1,i,0], abs=curvature)
def test_straight(self):
sol = run_mpc()
self._assert_null(np.array([sol]))
def test_y_symmetry(self):
sol = []
for y_init in [-0.5, 0.5]:
sol.append(run_mpc(y_init=y_init))
self._assert_simmetry(np.array(sol))
def test_poly_symmetry(self):
sol = []
for poly_shift in [-1., 1.]:
sol.append(run_mpc(poly_shift=poly_shift))
self._assert_simmetry(np.array(sol))
def test_curvature_symmetry(self):
sol = []
for curvature_init in [-0.1, 0.1]:
sol.append(run_mpc(curvature_init=curvature_init))
self._assert_simmetry(np.array(sol))
def test_psi_symmetry(self):
sol = []
for psi_init in [-0.1, 0.1]:
sol.append(run_mpc(psi_init=psi_init))
self._assert_simmetry(np.array(sol))
def test_no_overshoot(self):
y_init = 1.
sol = run_mpc(y_init=y_init)
for y in list(sol[:,1]):
assert y_init >= abs(y)
def test_switch_convergence(self):
lat_mpc = LateralMpc()
sol = run_mpc(lat_mpc=lat_mpc, poly_shift=3.0, v_ref=7.0)
right_psi_deg = np.degrees(sol[:,2])
sol = run_mpc(lat_mpc=lat_mpc, poly_shift=-3.0, v_ref=7.0)
left_psi_deg = np.degrees(sol[:,2])
np.testing.assert_almost_equal(right_psi_deg, -left_psi_deg, decimal=3)

View File

@@ -0,0 +1,31 @@
import cereal.messaging as messaging
from opendbc.car.toyota.values import CAR as TOYOTA
from openpilot.selfdrive.test.process_replay import replay_process_with_name
class TestLeads:
def test_radar_fault(self):
# if there's no radar-related can traffic, radard should either not respond or respond with an error
# this is tightly coupled with underlying car radar_interface implementation, but it's a good sanity check
def single_iter_pkg():
# single iter package, with meaningless cans and empty carState/modelV2
msgs = []
for _ in range(500):
can = messaging.new_message("can", 1)
cs = messaging.new_message("carState")
cp = messaging.new_message("carParams")
msgs.append(can.as_reader())
msgs.append(cs.as_reader())
msgs.append(cp.as_reader())
model = messaging.new_message("modelV2")
msgs.append(model.as_reader())
return msgs
msgs = [m for _ in range(3) for m in single_iter_pkg()]
out = replay_process_with_name("card", msgs, fingerprint=TOYOTA.TOYOTA_COROLLA_TSS2)
states = [m for m in out if m.which() == "liveTracks"]
failures = [not state.valid and len(state.liveTracks.errors) for state in states]
assert len(states) == 0 or all(failures)

View File

@@ -0,0 +1,56 @@
from cereal import car
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState, long_control_state_trans
class TestLongControlStateTransition:
def test_stay_stopped(self):
CP = car.CarParams.new_message()
active = True
current_state = LongCtrlState.stopping
next_state = long_control_state_trans(CP, active, current_state, v_ego=0.1,
should_stop=True, brake_pressed=False, cruise_standstill=False)
assert next_state == LongCtrlState.stopping
next_state = long_control_state_trans(CP, active, current_state, v_ego=0.1,
should_stop=False, brake_pressed=True, cruise_standstill=False)
assert next_state == LongCtrlState.stopping
next_state = long_control_state_trans(CP, active, current_state, v_ego=0.1,
should_stop=False, brake_pressed=False, cruise_standstill=True)
assert next_state == LongCtrlState.stopping
next_state = long_control_state_trans(CP, active, current_state, v_ego=1.0,
should_stop=False, brake_pressed=False, cruise_standstill=False)
assert next_state == LongCtrlState.pid
active = False
next_state = long_control_state_trans(CP, active, current_state, v_ego=1.0,
should_stop=False, brake_pressed=False, cruise_standstill=False)
assert next_state == LongCtrlState.off
def test_engage():
CP = car.CarParams.new_message()
active = True
current_state = LongCtrlState.off
next_state = long_control_state_trans(CP, active, current_state, v_ego=0.1,
should_stop=True, brake_pressed=False, cruise_standstill=False)
assert next_state == LongCtrlState.stopping
next_state = long_control_state_trans(CP, active, current_state, v_ego=0.1,
should_stop=False, brake_pressed=True, cruise_standstill=False)
assert next_state == LongCtrlState.stopping
next_state = long_control_state_trans(CP, active, current_state, v_ego=0.1,
should_stop=False, brake_pressed=False, cruise_standstill=True)
assert next_state == LongCtrlState.stopping
next_state = long_control_state_trans(CP, active, current_state, v_ego=0.1,
should_stop=False, brake_pressed=False, cruise_standstill=False)
assert next_state == LongCtrlState.pid
def test_starting():
CP = car.CarParams.new_message(startingState=True, vEgoStarting=0.5)
active = True
current_state = LongCtrlState.starting
next_state = long_control_state_trans(CP, active, current_state, v_ego=0.1,
should_stop=False, brake_pressed=False, cruise_standstill=False)
assert next_state == LongCtrlState.starting
next_state = long_control_state_trans(CP, active, current_state, v_ego=1.0,
should_stop=False, brake_pressed=False, cruise_standstill=False)
assert next_state == LongCtrlState.pid