Release 260111
This commit is contained in:
394
selfdrive/locationd/lagd.py
Normal file
394
selfdrive/locationd/lagd.py
Normal file
@@ -0,0 +1,394 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import numpy as np
|
||||
import capnp
|
||||
from collections import deque
|
||||
from functools import partial
|
||||
|
||||
import cereal.messaging as messaging
|
||||
from cereal import car, log
|
||||
from cereal.services import SERVICE_LIST
|
||||
from openpilot.common.params import Params
|
||||
from openpilot.common.realtime import config_realtime_process
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose, fft_next_good_size, parabolic_peak_interp
|
||||
|
||||
BLOCK_SIZE = 100
|
||||
BLOCK_NUM = 50
|
||||
BLOCK_NUM_NEEDED = 5
|
||||
MOVING_WINDOW_SEC = 60.0
|
||||
MIN_OKAY_WINDOW_SEC = 25.0
|
||||
MIN_RECOVERY_BUFFER_SEC = 2.0
|
||||
MIN_VEGO = 15.0
|
||||
MIN_ABS_YAW_RATE = 0.0
|
||||
MAX_YAW_RATE_SANITY_CHECK = 1.0
|
||||
MIN_NCC = 0.95
|
||||
MAX_LAG = 1.0
|
||||
MAX_LAG_STD = 0.1
|
||||
MAX_LAT_ACCEL = 2.0
|
||||
MAX_LAT_ACCEL_DIFF = 0.6
|
||||
MIN_CONFIDENCE = 0.7
|
||||
CORR_BORDER_OFFSET = 5
|
||||
LAG_CANDIDATE_CORR_THRESHOLD = 0.9
|
||||
|
||||
|
||||
def masked_normalized_cross_correlation(expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, n: int):
|
||||
"""
|
||||
References:
|
||||
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
|
||||
Pattern Recognition, pp. 2918-2925 (2010).
|
||||
:DOI:`10.1109/CVPR.2010.5540032`
|
||||
"""
|
||||
|
||||
eps = np.finfo(np.float64).eps
|
||||
expected_sig = np.asarray(expected_sig, dtype=np.float64)
|
||||
actual_sig = np.asarray(actual_sig, dtype=np.float64)
|
||||
|
||||
expected_sig[~mask] = 0.0
|
||||
actual_sig[~mask] = 0.0
|
||||
|
||||
rotated_expected_sig = expected_sig[::-1]
|
||||
rotated_mask = mask[::-1]
|
||||
|
||||
fft = partial(np.fft.fft, n=n)
|
||||
|
||||
actual_sig_fft = fft(actual_sig)
|
||||
rotated_expected_sig_fft = fft(rotated_expected_sig)
|
||||
actual_mask_fft = fft(mask.astype(np.float64))
|
||||
rotated_mask_fft = fft(rotated_mask.astype(np.float64))
|
||||
|
||||
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real
|
||||
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples)
|
||||
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps)
|
||||
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real
|
||||
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real
|
||||
|
||||
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real
|
||||
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples
|
||||
|
||||
actual_squared_fft = fft(actual_sig ** 2)
|
||||
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real
|
||||
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples
|
||||
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0)
|
||||
|
||||
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2)
|
||||
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real
|
||||
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples
|
||||
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0)
|
||||
|
||||
denom = np.sqrt(actual_sig_denom * expected_sig_denom)
|
||||
|
||||
# zero-out samples with very small denominators
|
||||
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True)
|
||||
nonzero_indices = denom > tol
|
||||
|
||||
ncc = np.zeros_like(denom, dtype=np.float64)
|
||||
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices]
|
||||
np.clip(ncc, -1, 1, out=ncc)
|
||||
|
||||
return ncc
|
||||
|
||||
|
||||
class Points:
|
||||
def __init__(self, num_points: int):
|
||||
self.times = deque[float]([0.0] * num_points, maxlen=num_points)
|
||||
self.okay = deque[bool]([False] * num_points, maxlen=num_points)
|
||||
self.desired = deque[float]([0.0] * num_points, maxlen=num_points)
|
||||
self.actual = deque[float]([0.0] * num_points, maxlen=num_points)
|
||||
|
||||
@property
|
||||
def num_points(self):
|
||||
return len(self.desired)
|
||||
|
||||
@property
|
||||
def num_okay(self):
|
||||
return np.count_nonzero(self.okay)
|
||||
|
||||
def update(self, t: float, desired: float, actual: float, okay: bool):
|
||||
self.times.append(t)
|
||||
self.okay.append(okay)
|
||||
self.desired.append(desired)
|
||||
self.actual.append(actual)
|
||||
|
||||
def get(self) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
||||
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay)
|
||||
|
||||
|
||||
class BlockAverage:
|
||||
def __init__(self, num_blocks: int, block_size: int, valid_blocks: int, initial_value: float):
|
||||
self.num_blocks = num_blocks
|
||||
self.block_size = block_size
|
||||
self.block_idx = valid_blocks % num_blocks
|
||||
self.idx = 0
|
||||
|
||||
self.values = np.tile(initial_value, (num_blocks, 1))
|
||||
self.valid_blocks = valid_blocks
|
||||
|
||||
def update(self, value: float):
|
||||
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + value) / (self.idx + 1)
|
||||
self.idx = (self.idx + 1) % self.block_size
|
||||
if self.idx == 0:
|
||||
self.block_idx = (self.block_idx + 1) % self.num_blocks
|
||||
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
|
||||
|
||||
def get(self) -> tuple[float, float, float, float]:
|
||||
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
|
||||
valid_and_current_idx = valid_block_idx + ([self.block_idx] if self.idx > 0 else [])
|
||||
|
||||
if len(valid_block_idx) > 0:
|
||||
valid_mean = float(np.mean(self.values[valid_block_idx], axis=0).item())
|
||||
valid_std = float(np.std(self.values[valid_block_idx], axis=0).item())
|
||||
else:
|
||||
valid_mean, valid_std = float('nan'), float('nan')
|
||||
|
||||
if len(valid_and_current_idx) > 0:
|
||||
current_mean = float(np.mean(self.values[valid_and_current_idx], axis=0).item())
|
||||
current_std = float(np.std(self.values[valid_and_current_idx], axis=0).item())
|
||||
else:
|
||||
current_mean, current_std = float('nan'), float('nan')
|
||||
|
||||
return valid_mean, valid_std, current_mean, current_std
|
||||
|
||||
|
||||
class LateralLagEstimator:
|
||||
inputs = {"carControl", "carState", "controlsState", "liveCalibration", "livePose"}
|
||||
|
||||
def __init__(self, CP: car.CarParams, dt: float,
|
||||
block_count: int = BLOCK_NUM, min_valid_block_count: int = BLOCK_NUM_NEEDED, block_size: int = BLOCK_SIZE,
|
||||
window_sec: float = MOVING_WINDOW_SEC, okay_window_sec: float = MIN_OKAY_WINDOW_SEC, min_recovery_buffer_sec: float = MIN_RECOVERY_BUFFER_SEC,
|
||||
min_vego: float = MIN_VEGO, min_yr: float = MIN_ABS_YAW_RATE, min_ncc: float = MIN_NCC,
|
||||
max_lat_accel: float = MAX_LAT_ACCEL, max_lat_accel_diff: float = MAX_LAT_ACCEL_DIFF, min_confidence: float = MIN_CONFIDENCE):
|
||||
self.dt = dt
|
||||
self.window_sec = window_sec
|
||||
self.okay_window_sec = okay_window_sec
|
||||
self.min_recovery_buffer_sec = min_recovery_buffer_sec
|
||||
self.initial_lag = CP.steerActuatorDelay + 0.2
|
||||
self.block_size = block_size
|
||||
self.block_count = block_count
|
||||
self.min_valid_block_count = min_valid_block_count
|
||||
self.min_vego = min_vego
|
||||
self.min_yr = min_yr
|
||||
self.min_ncc = min_ncc
|
||||
self.min_confidence = min_confidence
|
||||
self.max_lat_accel = max_lat_accel
|
||||
self.max_lat_accel_diff = max_lat_accel_diff
|
||||
|
||||
self.t = 0.0
|
||||
self.lat_active = False
|
||||
self.steering_pressed = False
|
||||
self.steering_saturated = False
|
||||
self.desired_curvature = 0.0
|
||||
self.v_ego = 0.0
|
||||
self.yaw_rate = 0.0
|
||||
self.yaw_rate_std = 0.0
|
||||
self.pose_valid = False
|
||||
|
||||
self.last_lat_inactive_t = 0.0
|
||||
self.last_steering_pressed_t = 0.0
|
||||
self.last_steering_saturated_t = 0.0
|
||||
self.last_pose_invalid_t = 0.0
|
||||
self.last_estimate_t = 0.0
|
||||
|
||||
self.calibrator = PoseCalibrator()
|
||||
|
||||
self.reset(self.initial_lag, 0)
|
||||
|
||||
def reset(self, initial_lag: float, valid_blocks: int):
|
||||
window_len = int(self.window_sec / self.dt)
|
||||
self.points = Points(window_len)
|
||||
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag)
|
||||
|
||||
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder:
|
||||
msg = messaging.new_message('liveDelay')
|
||||
|
||||
msg.valid = valid
|
||||
|
||||
liveDelay = msg.liveDelay
|
||||
|
||||
valid_mean_lag, valid_std, current_mean_lag, current_std = self.block_avg.get()
|
||||
if self.block_avg.valid_blocks >= self.min_valid_block_count and not np.isnan(valid_mean_lag) and not np.isnan(valid_std):
|
||||
if valid_std > MAX_LAG_STD:
|
||||
liveDelay.status = log.LiveDelayData.Status.invalid
|
||||
else:
|
||||
liveDelay.status = log.LiveDelayData.Status.estimated
|
||||
else:
|
||||
liveDelay.status = log.LiveDelayData.Status.unestimated
|
||||
|
||||
if liveDelay.status == log.LiveDelayData.Status.estimated:
|
||||
liveDelay.lateralDelay = valid_mean_lag
|
||||
else:
|
||||
liveDelay.lateralDelay = self.initial_lag
|
||||
|
||||
if not np.isnan(current_mean_lag) and not np.isnan(current_std):
|
||||
liveDelay.lateralDelayEstimate = current_mean_lag
|
||||
liveDelay.lateralDelayEstimateStd = current_std
|
||||
else:
|
||||
liveDelay.lateralDelayEstimate = self.initial_lag
|
||||
liveDelay.lateralDelayEstimateStd = 0.0
|
||||
|
||||
liveDelay.validBlocks = self.block_avg.valid_blocks
|
||||
liveDelay.calPerc = min(100 * (self.block_avg.valid_blocks * self.block_size + self.block_avg.idx) //
|
||||
(self.min_valid_block_count * self.block_size), 100)
|
||||
if debug:
|
||||
liveDelay.points = self.block_avg.values.flatten().tolist()
|
||||
|
||||
return msg
|
||||
|
||||
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader):
|
||||
if which == "carControl":
|
||||
self.lat_active = msg.latActive
|
||||
elif which == "carState":
|
||||
self.steering_pressed = msg.steeringPressed
|
||||
self.v_ego = msg.vEgo
|
||||
elif which == "controlsState":
|
||||
self.steering_saturated = getattr(msg.lateralControlState, msg.lateralControlState.which()).saturated
|
||||
self.desired_curvature = msg.desiredCurvature
|
||||
elif which == "liveCalibration":
|
||||
self.calibrator.feed_live_calib(msg)
|
||||
elif which == "livePose":
|
||||
device_pose = Pose.from_live_pose(msg)
|
||||
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
|
||||
self.yaw_rate = calibrated_pose.angular_velocity.yaw
|
||||
self.yaw_rate_std = calibrated_pose.angular_velocity.yaw_std
|
||||
self.pose_valid = msg.angularVelocityDevice.valid and msg.posenetOK and msg.inputsOK
|
||||
self.t = t
|
||||
|
||||
def points_enough(self):
|
||||
return self.points.num_points >= int(self.okay_window_sec / self.dt)
|
||||
|
||||
def points_valid(self):
|
||||
return self.points.num_okay >= int(self.okay_window_sec / self.dt)
|
||||
|
||||
def update_points(self):
|
||||
la_desired = self.desired_curvature * self.v_ego * self.v_ego
|
||||
la_actual_pose = self.yaw_rate * self.v_ego
|
||||
|
||||
fast = self.v_ego > self.min_vego
|
||||
turning = np.abs(self.yaw_rate) >= self.min_yr
|
||||
sensors_valid = self.pose_valid and np.abs(self.yaw_rate) < MAX_YAW_RATE_SANITY_CHECK and self.yaw_rate_std < MAX_YAW_RATE_SANITY_CHECK
|
||||
la_valid = np.abs(la_actual_pose) <= self.max_lat_accel and np.abs(la_desired - la_actual_pose) <= self.max_lat_accel_diff
|
||||
calib_valid = self.calibrator.calib_valid
|
||||
|
||||
if not self.lat_active:
|
||||
self.last_lat_inactive_t = self.t
|
||||
if self.steering_pressed:
|
||||
self.last_steering_pressed_t = self.t
|
||||
if self.steering_saturated:
|
||||
self.last_steering_saturated_t = self.t
|
||||
if not sensors_valid or not la_valid:
|
||||
self.last_pose_invalid_t = self.t
|
||||
|
||||
has_recovered = all( # wait for recovery after !lat_active, steering_pressed, steering_saturated, !sensors/la_valid
|
||||
self.t - last_t >= self.min_recovery_buffer_sec
|
||||
for last_t in [self.last_lat_inactive_t, self.last_steering_pressed_t, self.last_steering_saturated_t, self.last_pose_invalid_t]
|
||||
)
|
||||
okay = self.lat_active and not self.steering_pressed and not self.steering_saturated and \
|
||||
fast and turning and has_recovered and calib_valid and sensors_valid and la_valid
|
||||
|
||||
self.points.update(self.t, la_desired, la_actual_pose, okay)
|
||||
|
||||
def update_estimate(self):
|
||||
if not self.points_enough():
|
||||
return
|
||||
|
||||
times, desired, actual, okay = self.points.get()
|
||||
# check if there are any new valid data points since the last update
|
||||
is_valid = self.points_valid()
|
||||
if self.last_estimate_t != 0 and times[0] <= self.last_estimate_t:
|
||||
new_values_start_idx = next(-i for i, t in enumerate(reversed(times)) if t <= self.last_estimate_t)
|
||||
is_valid = is_valid and not (new_values_start_idx == 0 or not np.any(okay[new_values_start_idx:]))
|
||||
|
||||
delay, corr, confidence = self.actuator_delay(desired, actual, okay, self.dt, MAX_LAG)
|
||||
if corr < self.min_ncc or confidence < self.min_confidence or not is_valid:
|
||||
return
|
||||
|
||||
self.block_avg.update(delay)
|
||||
self.last_estimate_t = self.t
|
||||
|
||||
@staticmethod
|
||||
def actuator_delay(expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, dt: float, max_lag: float) -> tuple[float, float, float]:
|
||||
assert len(expected_sig) == len(actual_sig)
|
||||
max_lag_samples = int(max_lag / dt)
|
||||
padded_size = fft_next_good_size(len(expected_sig) + max_lag_samples)
|
||||
|
||||
ncc = masked_normalized_cross_correlation(expected_sig, actual_sig, mask, padded_size)
|
||||
|
||||
# only consider lags from 0 to max_lag
|
||||
roi = np.s_[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples]
|
||||
extended_roi = np.s_[roi.start - CORR_BORDER_OFFSET: roi.stop + CORR_BORDER_OFFSET]
|
||||
roi_ncc = ncc[roi]
|
||||
extended_roi_ncc = ncc[extended_roi]
|
||||
|
||||
max_corr_index = np.argmax(roi_ncc)
|
||||
corr = roi_ncc[max_corr_index]
|
||||
lag = parabolic_peak_interp(roi_ncc, max_corr_index) * dt
|
||||
|
||||
# to estimate lag confidence, gather all high-correlation candidates and see how spread they are
|
||||
# if e.g. 0.8 and 0.4 are both viable, this is an ambiguous case
|
||||
ncc_thresh = (roi_ncc.max() - roi_ncc.min()) * LAG_CANDIDATE_CORR_THRESHOLD + roi_ncc.min()
|
||||
good_lag_candidate_mask = extended_roi_ncc >= ncc_thresh
|
||||
good_lag_candidate_edges = np.diff(good_lag_candidate_mask.astype(int), prepend=0, append=0)
|
||||
starts, ends = np.where(good_lag_candidate_edges == 1)[0], np.where(good_lag_candidate_edges == -1)[0] - 1
|
||||
run_idx = np.searchsorted(starts, max_corr_index + CORR_BORDER_OFFSET, side='right') - 1
|
||||
width = ends[run_idx] - starts[run_idx] + 1
|
||||
confidence = np.clip(1 - width * dt, 0, 1)
|
||||
|
||||
return lag, corr, confidence
|
||||
|
||||
|
||||
def retrieve_initial_lag(params: Params, CP: car.CarParams):
|
||||
last_lag_data = params.get("LiveDelay")
|
||||
last_carparams_data = params.get("CarParamsPrevRoute")
|
||||
|
||||
if last_lag_data is not None:
|
||||
try:
|
||||
with log.Event.from_bytes(last_lag_data) as last_lag_msg, car.CarParams.from_bytes(last_carparams_data) as last_CP:
|
||||
ld = last_lag_msg.liveDelay
|
||||
if last_CP.carFingerprint != CP.carFingerprint:
|
||||
raise Exception("Car model mismatch")
|
||||
|
||||
lag, valid_blocks, status = ld.lateralDelayEstimate, ld.validBlocks, ld.status
|
||||
assert valid_blocks <= BLOCK_NUM, "Invalid number of valid blocks"
|
||||
assert status != log.LiveDelayData.Status.invalid, "Lag estimate is invalid"
|
||||
return lag, valid_blocks
|
||||
except Exception as e:
|
||||
cloudlog.error(f"Failed to retrieve initial lag: {e}")
|
||||
params.remove("LiveDelay")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def main():
|
||||
config_realtime_process([0, 1, 2, 3], 5)
|
||||
|
||||
DEBUG = bool(int(os.getenv("DEBUG", "0")))
|
||||
|
||||
pm = messaging.PubMaster(['liveDelay'])
|
||||
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carState', 'controlsState', 'carControl'], poll='livePose')
|
||||
|
||||
params = Params()
|
||||
CP = messaging.log_from_bytes(params.get("CarParams", block=True), car.CarParams)
|
||||
|
||||
lag_learner = LateralLagEstimator(CP, 1. / SERVICE_LIST['livePose'].frequency)
|
||||
if (initial_lag_params := retrieve_initial_lag(params, CP)) is not None:
|
||||
lag, valid_blocks = initial_lag_params
|
||||
lag_learner.reset(lag, valid_blocks)
|
||||
|
||||
while True:
|
||||
sm.update()
|
||||
if sm.all_checks():
|
||||
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
|
||||
if sm.updated[which]:
|
||||
t = sm.logMonoTime[which] * 1e-9
|
||||
lag_learner.handle_log(t, which, sm[which])
|
||||
lag_learner.update_points()
|
||||
|
||||
# 4Hz driven by livePose
|
||||
if sm.frame % 5 == 0:
|
||||
lag_learner.update_estimate()
|
||||
lag_msg = lag_learner.get_msg(sm.all_checks(), DEBUG)
|
||||
lag_msg_dat = lag_msg.to_bytes()
|
||||
pm.send('liveDelay', lag_msg_dat)
|
||||
|
||||
if sm.frame % 1200 == 0: # cache every 60 seconds
|
||||
params.put_nonblocking("LiveDelay", lag_msg_dat)
|
||||
Reference in New Issue
Block a user