Release 260111
This commit is contained in:
235
selfdrive/modeld/fill_model_msg.py
Normal file
235
selfdrive/modeld/fill_model_msg.py
Normal file
@@ -0,0 +1,235 @@
|
||||
import os
|
||||
import capnp
|
||||
import numpy as np
|
||||
import math
|
||||
from cereal import log
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants, Plan, Meta
|
||||
|
||||
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
|
||||
|
||||
ConfidenceClass = log.ModelDataV2.ConfidenceClass
|
||||
|
||||
|
||||
class PublishState:
|
||||
def __init__(self):
|
||||
self.disengage_buffer = np.zeros(ModelConstants.CONFIDENCE_BUFFER_LEN*ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
|
||||
self.prev_brake_5ms2_probs = np.zeros(ModelConstants.FCW_5MS2_PROBS_WIDTH, dtype=np.float32)
|
||||
self.prev_brake_3ms2_probs = np.zeros(ModelConstants.FCW_3MS2_PROBS_WIDTH, dtype=np.float32)
|
||||
|
||||
def fill_xyzt(builder, t, x, y, z, x_std=None, y_std=None, z_std=None):
|
||||
builder.t = t
|
||||
builder.x = x.tolist()
|
||||
builder.y = y.tolist()
|
||||
builder.z = z.tolist()
|
||||
if x_std is not None:
|
||||
builder.xStd = x_std.tolist()
|
||||
if y_std is not None:
|
||||
builder.yStd = y_std.tolist()
|
||||
if z_std is not None:
|
||||
builder.zStd = z_std.tolist()
|
||||
|
||||
def fill_xyvat(builder, t, x, y, v, a, x_std=None, y_std=None, v_std=None, a_std=None):
|
||||
builder.t = t
|
||||
builder.x = x.tolist()
|
||||
builder.y = y.tolist()
|
||||
builder.v = v.tolist()
|
||||
builder.a = a.tolist()
|
||||
if x_std is not None:
|
||||
builder.xStd = x_std.tolist()
|
||||
if y_std is not None:
|
||||
builder.yStd = y_std.tolist()
|
||||
if v_std is not None:
|
||||
builder.vStd = v_std.tolist()
|
||||
if a_std is not None:
|
||||
builder.aStd = a_std.tolist()
|
||||
|
||||
def fill_xyz_poly(builder, degree, x, y, z):
|
||||
xyz = np.stack([x, y, z], axis=1)
|
||||
coeffs = np.polynomial.polynomial.polyfit(ModelConstants.T_IDXS, xyz, deg=degree)
|
||||
builder.xCoefficients = coeffs[:, 0].tolist()
|
||||
builder.yCoefficients = coeffs[:, 1].tolist()
|
||||
builder.zCoefficients = coeffs[:, 2].tolist()
|
||||
|
||||
def fill_lane_line_meta(builder, lane_lines, lane_line_probs):
|
||||
builder.leftY = lane_lines[1].y[0]
|
||||
builder.leftProb = lane_line_probs[1]
|
||||
builder.rightY = lane_lines[2].y[0]
|
||||
builder.rightProb = lane_line_probs[2]
|
||||
|
||||
def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._DynamicStructBuilder,
|
||||
net_output_data: dict[str, np.ndarray], action: log.ModelDataV2.Action,
|
||||
publish_state: PublishState, vipc_frame_id: int, vipc_frame_id_extra: int,
|
||||
frame_id: int, frame_drop: float, timestamp_eof: int, model_execution_time: float,
|
||||
valid: bool) -> None:
|
||||
frame_age = frame_id - vipc_frame_id if frame_id > vipc_frame_id else 0
|
||||
frame_drop_perc = frame_drop * 100
|
||||
extended_msg.valid = valid
|
||||
base_msg.valid = valid
|
||||
|
||||
driving_model_data = base_msg.drivingModelData
|
||||
|
||||
driving_model_data.frameId = vipc_frame_id
|
||||
driving_model_data.frameIdExtra = vipc_frame_id_extra
|
||||
driving_model_data.frameDropPerc = frame_drop_perc
|
||||
driving_model_data.modelExecutionTime = model_execution_time
|
||||
|
||||
driving_model_data.action = action
|
||||
|
||||
modelV2 = extended_msg.modelV2
|
||||
modelV2.frameId = vipc_frame_id
|
||||
modelV2.frameIdExtra = vipc_frame_id_extra
|
||||
modelV2.frameAge = frame_age
|
||||
modelV2.frameDropPerc = frame_drop_perc
|
||||
modelV2.timestampEof = timestamp_eof
|
||||
modelV2.modelExecutionTime = model_execution_time
|
||||
|
||||
# plan
|
||||
fill_xyzt(modelV2.position, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.POSITION].T, *net_output_data['plan_stds'][0,:,Plan.POSITION].T)
|
||||
fill_xyzt(modelV2.velocity, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.VELOCITY].T)
|
||||
fill_xyzt(modelV2.acceleration, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ACCELERATION].T)
|
||||
fill_xyzt(modelV2.orientation, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.T_FROM_CURRENT_EULER].T)
|
||||
fill_xyzt(modelV2.orientationRate, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ORIENTATION_RATE].T)
|
||||
|
||||
# poly path
|
||||
fill_xyz_poly(driving_model_data.path, ModelConstants.POLY_PATH_DEGREE, *net_output_data['plan'][0,:,Plan.POSITION].T)
|
||||
|
||||
# action
|
||||
modelV2.action = action
|
||||
|
||||
# times at X_IDXS of edges and lines aren't used
|
||||
# LINE_T_IDXS: list[float] = []
|
||||
|
||||
# times at X_IDXS according to model plan
|
||||
LINE_T_IDXS = [np.nan] * ModelConstants.IDX_N
|
||||
LINE_T_IDXS[0] = 0.0
|
||||
plan_x = net_output_data['plan'][0, :, Plan.POSITION][:, 0].tolist()
|
||||
Tmax = ModelConstants.T_IDXS[ModelConstants.IDX_N - 1]
|
||||
for xidx in range(1, ModelConstants.IDX_N):
|
||||
tidx = 0
|
||||
# increment tidx until we find an element that's further away than the current xidx
|
||||
while tidx < ModelConstants.IDX_N - 1 and plan_x[tidx + 1] < ModelConstants.X_IDXS[xidx]:
|
||||
tidx += 1
|
||||
if tidx == ModelConstants.IDX_N - 1:
|
||||
for k in range(xidx, ModelConstants.IDX_N):
|
||||
LINE_T_IDXS[k] = Tmax
|
||||
break
|
||||
# interpolate to find `t` for the current xidx
|
||||
current_x_val = plan_x[tidx]
|
||||
next_x_val = plan_x[tidx + 1]
|
||||
|
||||
dx = next_x_val - current_x_val
|
||||
if dx <= 1e-9:
|
||||
LINE_T_IDXS[xidx] = ModelConstants.T_IDXS[tidx]
|
||||
else:
|
||||
p = (ModelConstants.X_IDXS[xidx] - current_x_val) / dx
|
||||
if p < 0.0: p = 0.0
|
||||
elif p > 1.0: p = 1.0
|
||||
LINE_T_IDXS[xidx] = p * ModelConstants.T_IDXS[tidx + 1] + (1.0 - p) * ModelConstants.T_IDXS[tidx]
|
||||
|
||||
#p = (ModelConstants.X_IDXS[xidx] - current_x_val) / (next_x_val - current_x_val) if abs(
|
||||
# next_x_val - current_x_val) > 1e-9 else float('nan')
|
||||
#LINE_T_IDXS[xidx] = p * ModelConstants.T_IDXS[tidx + 1] + (1 - p) * ModelConstants.T_IDXS[tidx]
|
||||
|
||||
LINE_T_IDXS = [float(Tmax if math.isnan(float(v)) else float(v)) for v in LINE_T_IDXS]
|
||||
|
||||
# 비내림(monotonic non-decreasing) 보정 (순수 파이썬, numpy 불사용)
|
||||
running = LINE_T_IDXS[0]
|
||||
for i in range(1, len(LINE_T_IDXS)):
|
||||
if LINE_T_IDXS[i] < running:
|
||||
LINE_T_IDXS[i] = running
|
||||
else:
|
||||
running = LINE_T_IDXS[i]
|
||||
|
||||
# lane lines
|
||||
modelV2.init('laneLines', 4)
|
||||
for i in range(4):
|
||||
lane_line = modelV2.laneLines[i]
|
||||
fill_xyzt(lane_line, LINE_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['lane_lines'][0,i,:,0], net_output_data['lane_lines'][0,i,:,1])
|
||||
modelV2.laneLineStds = net_output_data['lane_lines_stds'][0,:,0,0].tolist()
|
||||
modelV2.laneLineProbs = net_output_data['lane_lines_prob'][0,1::2].tolist()
|
||||
|
||||
fill_lane_line_meta(driving_model_data.laneLineMeta, modelV2.laneLines, modelV2.laneLineProbs)
|
||||
|
||||
# road edges
|
||||
modelV2.init('roadEdges', 2)
|
||||
for i in range(2):
|
||||
road_edge = modelV2.roadEdges[i]
|
||||
fill_xyzt(road_edge, LINE_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['road_edges'][0,i,:,0], net_output_data['road_edges'][0,i,:,1])
|
||||
modelV2.roadEdgeStds = net_output_data['road_edges_stds'][0,:,0,0].tolist()
|
||||
|
||||
# leads
|
||||
modelV2.init('leadsV3', 3)
|
||||
for i in range(3):
|
||||
lead = modelV2.leadsV3[i]
|
||||
fill_xyvat(lead, ModelConstants.LEAD_T_IDXS, *net_output_data['lead'][0,i].T, *net_output_data['lead_stds'][0,i].T)
|
||||
lead.prob = net_output_data['lead_prob'][0,i].tolist()
|
||||
lead.probTime = ModelConstants.LEAD_T_OFFSETS[i]
|
||||
|
||||
# meta
|
||||
meta = modelV2.meta
|
||||
meta.desireState = net_output_data['desire_state'][0].reshape(-1).tolist()
|
||||
meta.desirePrediction = net_output_data['desire_pred'][0].reshape(-1).tolist()
|
||||
meta.engagedProb = net_output_data['meta'][0,Meta.ENGAGED].item()
|
||||
meta.init('disengagePredictions')
|
||||
disengage_predictions = meta.disengagePredictions
|
||||
disengage_predictions.t = ModelConstants.META_T_IDXS
|
||||
disengage_predictions.brakeDisengageProbs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE].tolist()
|
||||
disengage_predictions.gasDisengageProbs = net_output_data['meta'][0,Meta.GAS_DISENGAGE].tolist()
|
||||
disengage_predictions.steerOverrideProbs = net_output_data['meta'][0,Meta.STEER_OVERRIDE].tolist()
|
||||
disengage_predictions.brake3MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_3].tolist()
|
||||
disengage_predictions.brake4MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_4].tolist()
|
||||
disengage_predictions.brake5MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_5].tolist()
|
||||
disengage_predictions.gasPressProbs = net_output_data['meta'][0,Meta.GAS_PRESS].tolist()
|
||||
disengage_predictions.brakePressProbs = net_output_data['meta'][0,Meta.BRAKE_PRESS].tolist()
|
||||
|
||||
publish_state.prev_brake_5ms2_probs[:-1] = publish_state.prev_brake_5ms2_probs[1:]
|
||||
publish_state.prev_brake_5ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_5][0]
|
||||
publish_state.prev_brake_3ms2_probs[:-1] = publish_state.prev_brake_3ms2_probs[1:]
|
||||
publish_state.prev_brake_3ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_3][0]
|
||||
hard_brake_predicted = (publish_state.prev_brake_5ms2_probs > ModelConstants.FCW_THRESHOLDS_5MS2).all() and \
|
||||
(publish_state.prev_brake_3ms2_probs > ModelConstants.FCW_THRESHOLDS_3MS2).all()
|
||||
meta.hardBrakePredicted = hard_brake_predicted.item()
|
||||
|
||||
# confidence
|
||||
if vipc_frame_id % (2*ModelConstants.MODEL_RUN_FREQ) == 0:
|
||||
# any disengage prob
|
||||
brake_disengage_probs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE]
|
||||
gas_disengage_probs = net_output_data['meta'][0,Meta.GAS_DISENGAGE]
|
||||
steer_override_probs = net_output_data['meta'][0,Meta.STEER_OVERRIDE]
|
||||
any_disengage_probs = 1-((1-brake_disengage_probs)*(1-gas_disengage_probs)*(1-steer_override_probs))
|
||||
# independent disengage prob for each 2s slice
|
||||
ind_disengage_probs = np.r_[any_disengage_probs[0], np.diff(any_disengage_probs) / (1 - any_disengage_probs[:-1])]
|
||||
# rolling buf for 2, 4, 6, 8, 10s
|
||||
publish_state.disengage_buffer[:-ModelConstants.DISENGAGE_WIDTH] = publish_state.disengage_buffer[ModelConstants.DISENGAGE_WIDTH:]
|
||||
publish_state.disengage_buffer[-ModelConstants.DISENGAGE_WIDTH:] = ind_disengage_probs
|
||||
|
||||
score = 0.
|
||||
for i in range(ModelConstants.DISENGAGE_WIDTH):
|
||||
score += publish_state.disengage_buffer[i*ModelConstants.DISENGAGE_WIDTH+ModelConstants.DISENGAGE_WIDTH-1-i].item() / ModelConstants.DISENGAGE_WIDTH
|
||||
if score < ModelConstants.RYG_GREEN:
|
||||
modelV2.confidence = ConfidenceClass.green
|
||||
elif score < ModelConstants.RYG_YELLOW:
|
||||
modelV2.confidence = ConfidenceClass.yellow
|
||||
else:
|
||||
modelV2.confidence = ConfidenceClass.red
|
||||
|
||||
# raw prediction if enabled
|
||||
if SEND_RAW_PRED:
|
||||
modelV2.rawPredictions = net_output_data['raw_pred'].tobytes()
|
||||
|
||||
def fill_pose_msg(msg: capnp._DynamicStructBuilder, net_output_data: dict[str, np.ndarray],
|
||||
vipc_frame_id: int, vipc_dropped_frames: int, timestamp_eof: int, live_calib_seen: bool) -> None:
|
||||
msg.valid = live_calib_seen & (vipc_dropped_frames < 1)
|
||||
cameraOdometry = msg.cameraOdometry
|
||||
|
||||
cameraOdometry.frameId = vipc_frame_id
|
||||
cameraOdometry.timestampEof = timestamp_eof
|
||||
|
||||
cameraOdometry.trans = net_output_data['pose'][0,:3].tolist()
|
||||
cameraOdometry.rot = net_output_data['pose'][0,3:].tolist()
|
||||
cameraOdometry.wideFromDeviceEuler = net_output_data['wide_from_device_euler'][0,:].tolist()
|
||||
cameraOdometry.roadTransformTrans = net_output_data['road_transform'][0,:3].tolist()
|
||||
cameraOdometry.transStd = net_output_data['pose_stds'][0,:3].tolist()
|
||||
cameraOdometry.rotStd = net_output_data['pose_stds'][0,3:].tolist()
|
||||
cameraOdometry.wideFromDeviceEulerStd = net_output_data['wide_from_device_euler_stds'][0,:].tolist()
|
||||
cameraOdometry.roadTransformTransStd = net_output_data['road_transform_stds'][0,:3].tolist()
|
||||
Reference in New Issue
Block a user