Release 260111

This commit is contained in:
Comma Device
2026-01-11 18:23:29 +08:00
commit 3721ecbf8a
2601 changed files with 855070 additions and 0 deletions

View File

70
tools/sim/lib/camerad.py Normal file
View File

@@ -0,0 +1,70 @@
import numpy as np
import os
import pyopencl as cl
import pyopencl.array as cl_array
from msgq.visionipc import VisionIpcServer, VisionStreamType
from cereal import messaging
from openpilot.common.basedir import BASEDIR
from openpilot.tools.sim.lib.common import W, H
class Camerad:
"""Simulates the camerad daemon"""
def __init__(self, dual_camera):
self.pm = messaging.PubMaster(['roadCameraState', 'wideRoadCameraState'])
self.frame_road_id = 0
self.frame_wide_id = 0
self.vipc_server = VisionIpcServer("camerad")
self.vipc_server.create_buffers(VisionStreamType.VISION_STREAM_ROAD, 5, W, H)
if dual_camera:
self.vipc_server.create_buffers(VisionStreamType.VISION_STREAM_WIDE_ROAD, 5, W, H)
self.vipc_server.start_listener()
# set up for pyopencl rgb to yuv conversion
self.ctx = cl.create_some_context()
self.queue = cl.CommandQueue(self.ctx)
cl_arg = f" -DHEIGHT={H} -DWIDTH={W} -DRGB_STRIDE={W * 3} -DUV_WIDTH={W // 2} -DUV_HEIGHT={H // 2} -DRGB_SIZE={W * H} -DCL_DEBUG "
kernel_fn = os.path.join(BASEDIR, "tools/sim/rgb_to_nv12.cl")
with open(kernel_fn) as f:
prg = cl.Program(self.ctx, f.read()).build(cl_arg)
self.krnl = prg.rgb_to_nv12
self.Wdiv4 = W // 4 if (W % 4 == 0) else (W + (4 - W % 4)) // 4
self.Hdiv4 = H // 4 if (H % 4 == 0) else (H + (4 - H % 4)) // 4
def cam_send_yuv_road(self, yuv):
self._send_yuv(yuv, self.frame_road_id, 'roadCameraState', VisionStreamType.VISION_STREAM_ROAD)
self.frame_road_id += 1
def cam_send_yuv_wide_road(self, yuv):
self._send_yuv(yuv, self.frame_wide_id, 'wideRoadCameraState', VisionStreamType.VISION_STREAM_WIDE_ROAD)
self.frame_wide_id += 1
# Returns: yuv bytes
def rgb_to_yuv(self, rgb):
assert rgb.shape == (H, W, 3), f"{rgb.shape}"
assert rgb.dtype == np.uint8
rgb_cl = cl_array.to_device(self.queue, rgb)
yuv_cl = cl_array.empty_like(rgb_cl)
self.krnl(self.queue, (self.Wdiv4, self.Hdiv4), None, rgb_cl.data, yuv_cl.data).wait()
yuv = np.resize(yuv_cl.get(), rgb.size // 2)
return yuv.data.tobytes()
def _send_yuv(self, yuv, frame_id, pub_type, yuv_type):
eof = int(frame_id * 0.05 * 1e9)
self.vipc_server.send(yuv_type, yuv, frame_id, eof, eof)
dat = messaging.new_message(pub_type, valid=True)
msg = {
"frameId": frame_id,
"transform": [1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0]
}
setattr(dat, pub_type, msg)
self.pm.send(pub_type, dat)

100
tools/sim/lib/common.py Normal file
View File

@@ -0,0 +1,100 @@
import math
import multiprocessing
import numpy as np
from abc import ABC, abstractmethod
from collections import namedtuple
W, H = 1928, 1208
vec3 = namedtuple("vec3", ["x", "y", "z"])
class GPSState:
def __init__(self):
self.latitude = 0
self.longitude = 0
self.altitude = 0
def from_xy(self, xy):
"""Simulates a lat/lon from an xy coordinate on a plane, for simple simulation. TODO: proper global projection?"""
BASE_LAT = 32.75308505188913
BASE_LON = -117.2095393365393
DEG_TO_METERS = 100000
self.latitude = float(BASE_LAT + xy[0] / DEG_TO_METERS)
self.longitude = float(BASE_LON + xy[1] / DEG_TO_METERS)
self.altitude = 0
class IMUState:
def __init__(self):
self.accelerometer: vec3 = vec3(0,0,0)
self.gyroscope: vec3 = vec3(0,0,0)
self.bearing: float = 0
class SimulatorState:
def __init__(self):
self.valid = False
self.is_engaged = False
self.ignition = True
self.velocity: vec3 = None
self.bearing: float = 0
self.gps = GPSState()
self.imu = IMUState()
self.steering_angle: float = 0
self.user_gas: float = 0
self.user_brake: float = 0
self.user_torque: float = 0
self.cruise_button = 0
self.left_blinker = False
self.right_blinker = False
@property
def speed(self):
return math.sqrt(self.velocity.x ** 2 + self.velocity.y ** 2 + self.velocity.z ** 2)
class World(ABC):
def __init__(self, dual_camera):
self.dual_camera = dual_camera
self.image_lock = multiprocessing.Semaphore(value=0)
self.road_image = np.zeros((H, W, 3), dtype=np.uint8)
self.wide_road_image = np.zeros((H, W, 3), dtype=np.uint8)
self.exit_event = multiprocessing.Event()
@abstractmethod
def apply_controls(self, steer_sim, throttle_out, brake_out):
pass
@abstractmethod
def tick(self):
pass
@abstractmethod
def read_state(self):
pass
@abstractmethod
def read_sensors(self, simulator_state: SimulatorState):
pass
@abstractmethod
def read_cameras(self):
pass
@abstractmethod
def close(self, reason: str):
pass
@abstractmethod
def reset(self):
pass

View File

@@ -0,0 +1,103 @@
import sys
import termios
import time
from multiprocessing import Queue
from termios import (BRKINT, CS8, CSIZE, ECHO, ICANON, ICRNL, IEXTEN, INPCK,
ISTRIP, IXON, PARENB, VMIN, VTIME)
from typing import NoReturn
from openpilot.tools.sim.bridge.common import QueueMessage, control_cmd_gen
# Indexes for termios list.
IFLAG = 0
OFLAG = 1
CFLAG = 2
LFLAG = 3
ISPEED = 4
OSPEED = 5
CC = 6
KEYBOARD_HELP = """
| key | functionality |
|------|-----------------------|
| 1 | Cruise Resume / Accel |
| 2 | Cruise Set / Decel |
| 3 | Cruise Cancel |
| r | Reset Simulation |
| i | Toggle Ignition |
| q | Exit all |
| wasd | Control manually |
"""
def getch() -> str:
STDIN_FD = sys.stdin.fileno()
old_settings = termios.tcgetattr(STDIN_FD)
try:
# set
mode = old_settings.copy()
mode[IFLAG] &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON)
#mode[OFLAG] &= ~(OPOST)
mode[CFLAG] &= ~(CSIZE | PARENB)
mode[CFLAG] |= CS8
mode[LFLAG] &= ~(ECHO | ICANON | IEXTEN)
mode[CC][VMIN] = 1
mode[CC][VTIME] = 0
termios.tcsetattr(STDIN_FD, termios.TCSAFLUSH, mode)
ch = sys.stdin.read(1)
finally:
termios.tcsetattr(STDIN_FD, termios.TCSADRAIN, old_settings)
return ch
def print_keyboard_help():
print(f"Keyboard Commands:\n{KEYBOARD_HELP}")
def keyboard_poll_thread(q: 'Queue[QueueMessage]'):
print_keyboard_help()
while True:
c = getch()
if c == '1':
q.put(control_cmd_gen("cruise_up"))
elif c == '2':
q.put(control_cmd_gen("cruise_down"))
elif c == '3':
q.put(control_cmd_gen("cruise_cancel"))
elif c == 'w':
q.put(control_cmd_gen(f"throttle_{1.0}"))
elif c == 'a':
q.put(control_cmd_gen(f"steer_{-0.15}"))
elif c == 's':
q.put(control_cmd_gen(f"brake_{1.0}"))
elif c == 'd':
q.put(control_cmd_gen(f"steer_{0.15}"))
elif c == 'z':
q.put(control_cmd_gen("blinker_left"))
elif c == 'x':
q.put(control_cmd_gen("blinker_right"))
elif c == 'i':
q.put(control_cmd_gen("ignition"))
elif c == 'r':
q.put(control_cmd_gen("reset"))
elif c == 'q':
q.put(control_cmd_gen("quit"))
break
else:
print_keyboard_help()
def test(q: 'Queue[str]') -> NoReturn:
while True:
print([q.get_nowait() for _ in range(q.qsize())] or None)
time.sleep(0.25)
if __name__ == '__main__':
from multiprocessing import Process, Queue
q: 'Queue[QueueMessage]' = Queue()
p = Process(target=test, args=(q,))
p.daemon = True
p.start()
keyboard_poll_thread(q)

View File

@@ -0,0 +1,190 @@
#!/usr/bin/env python3
# set up wheel
import array
import os
import struct
from fcntl import ioctl
from typing import NoReturn
from openpilot.tools.sim.bridge.common import control_cmd_gen
# Iterate over the joystick devices.
print('Available devices:')
for fn in os.listdir('/dev/input'):
if fn.startswith('js'):
print(f' /dev/input/{fn}')
# We'll store the states here.
axis_states: dict[str, float] = {}
button_states: dict[str, float] = {}
# These constants were borrowed from linux/input.h
axis_names = {
0x00 : 'x',
0x01 : 'y',
0x02 : 'z',
0x03 : 'rx',
0x04 : 'ry',
0x05 : 'rz',
0x06 : 'trottle',
0x07 : 'rudder',
0x08 : 'wheel',
0x09 : 'gas',
0x0a : 'brake',
0x10 : 'hat0x',
0x11 : 'hat0y',
0x12 : 'hat1x',
0x13 : 'hat1y',
0x14 : 'hat2x',
0x15 : 'hat2y',
0x16 : 'hat3x',
0x17 : 'hat3y',
0x18 : 'pressure',
0x19 : 'distance',
0x1a : 'tilt_x',
0x1b : 'tilt_y',
0x1c : 'tool_width',
0x20 : 'volume',
0x28 : 'misc',
}
button_names = {
0x120 : 'trigger',
0x121 : 'thumb',
0x122 : 'thumb2',
0x123 : 'top',
0x124 : 'top2',
0x125 : 'pinkie',
0x126 : 'base',
0x127 : 'base2',
0x128 : 'base3',
0x129 : 'base4',
0x12a : 'base5',
0x12b : 'base6',
0x12f : 'dead',
0x130 : 'a',
0x131 : 'b',
0x132 : 'c',
0x133 : 'x',
0x134 : 'y',
0x135 : 'z',
0x136 : 'tl',
0x137 : 'tr',
0x138 : 'tl2',
0x139 : 'tr2',
0x13a : 'select',
0x13b : 'start',
0x13c : 'mode',
0x13d : 'thumbl',
0x13e : 'thumbr',
0x220 : 'dpad_up',
0x221 : 'dpad_down',
0x222 : 'dpad_left',
0x223 : 'dpad_right',
# XBox 360 controller uses these codes.
0x2c0 : 'dpad_left',
0x2c1 : 'dpad_right',
0x2c2 : 'dpad_up',
0x2c3 : 'dpad_down',
}
axis_name_list: list[str] = []
button_name_list: list[str] = []
def wheel_poll_thread(q: 'Queue[str]') -> NoReturn:
# Open the joystick device.
fn = '/dev/input/js0'
print(f'Opening {fn}...')
jsdev = open(fn, 'rb')
# Get the device name.
#buf = bytearray(63)
buf = array.array('B', [0] * 64)
ioctl(jsdev, 0x80006a13 + (0x10000 * len(buf)), buf) # JSIOCGNAME(len)
js_name = buf.tobytes().rstrip(b'\x00').decode('utf-8')
print(f'Device name: {js_name}')
# Get number of axes and buttons.
buf = array.array('B', [0])
ioctl(jsdev, 0x80016a11, buf) # JSIOCGAXES
num_axes = buf[0]
buf = array.array('B', [0])
ioctl(jsdev, 0x80016a12, buf) # JSIOCGBUTTONS
num_buttons = buf[0]
# Get the axis map.
buf = array.array('B', [0] * 0x40)
ioctl(jsdev, 0x80406a32, buf) # JSIOCGAXMAP
for _axis in buf[:num_axes]:
axis_name = axis_names.get(_axis, f'unknown(0x{_axis:02x})')
axis_name_list.append(axis_name)
axis_states[axis_name] = 0.0
# Get the button map.
buf = array.array('H', [0] * 200)
ioctl(jsdev, 0x80406a34, buf) # JSIOCGBTNMAP
for btn in buf[:num_buttons]:
btn_name = button_names.get(btn, f'unknown(0x{btn:03x})')
button_name_list.append(btn_name)
button_states[btn_name] = 0
print(f'{num_axes} axes found: {", ".join(axis_name_list)}')
print(f'{num_buttons} buttons found: {", ".join(button_name_list)}')
# Enable FF
import evdev
from evdev import ecodes, InputDevice
device = evdev.list_devices()[0]
evtdev = InputDevice(device)
val = 24000
evtdev.write(ecodes.EV_FF, ecodes.FF_AUTOCENTER, val)
while True:
evbuf = jsdev.read(8)
value, mtype, number = struct.unpack('4xhBB', evbuf)
# print(mtype, number, value)
if mtype & 0x02: # wheel & paddles
axis = axis_name_list[number]
if axis == "z": # gas
fvalue = value / 32767.0
axis_states[axis] = fvalue
normalized = (1 - fvalue) * 50
q.put(control_cmd_gen(f"throttle_{normalized:f}"))
elif axis == "rz": # brake
fvalue = value / 32767.0
axis_states[axis] = fvalue
normalized = (1 - fvalue) * 50
q.put(control_cmd_gen(f"brake_{normalized:f}"))
elif axis == "x": # steer angle
fvalue = value / 32767.0
axis_states[axis] = fvalue
normalized = fvalue
q.put(control_cmd_gen(f"steer_{normalized:f}"))
elif mtype & 0x01: # buttons
if value == 1: # press down
if number in [0, 19]: # X
q.put(control_cmd_gen("cruise_down"))
elif number in [3, 18]: # triangle
q.put(control_cmd_gen("cruise_up"))
elif number in [1, 6]: # square
q.put(control_cmd_gen("cruise_cancel"))
elif number in [10, 21]: # R3
q.put(control_cmd_gen("reverse_switch"))
if __name__ == '__main__':
from multiprocessing import Process, Queue
q: 'Queue[str]' = Queue()
p = Process(target=wheel_poll_thread, args=(q,))
p.start()

View File

@@ -0,0 +1,112 @@
import traceback
import cereal.messaging as messaging
from opendbc.can.packer import CANPacker
from opendbc.can.parser import CANParser
from opendbc.car.honda.values import HondaSafetyFlags
from openpilot.common.params import Params
from openpilot.selfdrive.pandad.pandad_api_impl import can_list_to_can_capnp
from openpilot.tools.sim.lib.common import SimulatorState
class SimulatedCar:
"""Simulates a honda civic 2022 (panda state + can messages) to OpenPilot"""
packer = CANPacker("honda_civic_ex_2022_can_generated")
def __init__(self):
self.pm = messaging.PubMaster(['can', 'pandaStates'])
self.sm = messaging.SubMaster(['carControl', 'controlsState', 'carParams', 'selfdriveState'])
self.cp = self.get_car_can_parser()
self.idx = 0
self.params = Params()
self.obd_multiplexing = False
@staticmethod
def get_car_can_parser():
dbc_f = 'honda_civic_ex_2022_can_generated'
checks = []
return CANParser(dbc_f, checks, 0)
def send_can_messages(self, simulator_state: SimulatorState):
if not simulator_state.valid:
return
msg = []
# *** powertrain bus ***
speed = simulator_state.speed * 3.6 # convert m/s to kph
msg.append(self.packer.make_can_msg("ENGINE_DATA", 0, {"XMISSION_SPEED": speed}))
msg.append(self.packer.make_can_msg("WHEEL_SPEEDS", 0, {
"WHEEL_SPEED_FL": speed,
"WHEEL_SPEED_FR": speed,
"WHEEL_SPEED_RL": speed,
"WHEEL_SPEED_RR": speed
}))
msg.append(self.packer.make_can_msg("SCM_BUTTONS", 0, {"CRUISE_BUTTONS": simulator_state.cruise_button}))
msg.append(self.packer.make_can_msg("GEARBOX", 0, {"GEAR": 4, "GEAR_SHIFTER": 8}))
msg.append(self.packer.make_can_msg("GAS_PEDAL_2", 0, {}))
msg.append(self.packer.make_can_msg("SEATBELT_STATUS", 0, {"SEATBELT_DRIVER_LATCHED": 1}))
msg.append(self.packer.make_can_msg("STEER_STATUS", 0, {"STEER_TORQUE_SENSOR": simulator_state.user_torque}))
msg.append(self.packer.make_can_msg("STEERING_SENSORS", 0, {"STEER_ANGLE": simulator_state.steering_angle}))
msg.append(self.packer.make_can_msg("VSA_STATUS", 0, {}))
msg.append(self.packer.make_can_msg("STANDSTILL", 0, {"WHEELS_MOVING": 1 if simulator_state.speed >= 1.0 else 0}))
msg.append(self.packer.make_can_msg("STEER_MOTOR_TORQUE", 0, {}))
msg.append(self.packer.make_can_msg("EPB_STATUS", 0, {}))
msg.append(self.packer.make_can_msg("DOORS_STATUS", 0, {}))
msg.append(self.packer.make_can_msg("CRUISE_PARAMS", 0, {}))
msg.append(self.packer.make_can_msg("CRUISE", 0, {}))
msg.append(self.packer.make_can_msg("CRUISE_FAULT_STATUS", 0, {}))
msg.append(self.packer.make_can_msg("SCM_FEEDBACK", 0,
{
"MAIN_ON": 1,
"LEFT_BLINKER": simulator_state.left_blinker,
"RIGHT_BLINKER": simulator_state.right_blinker
}))
msg.append(self.packer.make_can_msg("POWERTRAIN_DATA", 0,
{
"ACC_STATUS": int(simulator_state.is_engaged),
"PEDAL_GAS": simulator_state.user_gas,
"BRAKE_PRESSED": simulator_state.user_brake > 0
}))
msg.append(self.packer.make_can_msg("CAR_SPEED", 0, {}))
# *** cam bus ***
msg.append(self.packer.make_can_msg("STEERING_CONTROL", 2, {}))
msg.append(self.packer.make_can_msg("ACC_HUD", 2, {}))
msg.append(self.packer.make_can_msg("LKAS_HUD", 2, {}))
self.pm.send('can', can_list_to_can_capnp(msg))
def send_panda_state(self, simulator_state):
self.sm.update(0)
if self.params.get_bool("ObdMultiplexingEnabled") != self.obd_multiplexing:
self.obd_multiplexing = not self.obd_multiplexing
self.params.put_bool("ObdMultiplexingChanged", True)
dat = messaging.new_message('pandaStates', 1)
dat.valid = True
dat.pandaStates[0] = {
'ignitionLine': simulator_state.ignition,
'pandaType': "blackPanda",
'controlsAllowed': True,
'safetyModel': 'hondaBosch',
'alternativeExperience': self.sm["carParams"].alternativeExperience,
'safetyParam': HondaSafetyFlags.RADARLESS.value | HondaSafetyFlags.BOSCH_LONG.value,
}
self.pm.send('pandaStates', dat)
def update(self, simulator_state: SimulatorState):
try:
self.send_can_messages(simulator_state)
if self.idx % 50 == 0: # only send panda states at 2hz
self.send_panda_state(simulator_state)
self.idx += 1
except Exception:
traceback.print_exc()
raise

View File

@@ -0,0 +1,122 @@
import time
from cereal import log
import cereal.messaging as messaging
from openpilot.common.realtime import DT_DMON
from openpilot.tools.sim.lib.camerad import Camerad
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from openpilot.tools.sim.lib.common import World, SimulatorState
class SimulatedSensors:
"""Simulates the C3 sensors (acc, gyro, gps, peripherals, dm state, cameras) to OpenPilot"""
def __init__(self, dual_camera=False):
self.pm = messaging.PubMaster(['accelerometer', 'gyroscope', 'gpsLocationExternal', 'driverStateV2', 'driverMonitoringState', 'peripheralState'])
self.camerad = Camerad(dual_camera=dual_camera)
self.last_perp_update = 0
self.last_dmon_update = 0
def send_imu_message(self, simulator_state: 'SimulatorState'):
for _ in range(5):
dat = messaging.new_message('accelerometer', valid=True)
dat.accelerometer.sensor = 4
dat.accelerometer.type = 0x10
dat.accelerometer.timestamp = dat.logMonoTime # TODO: use the IMU timestamp
dat.accelerometer.init('acceleration')
dat.accelerometer.acceleration.v = [simulator_state.imu.accelerometer.x, simulator_state.imu.accelerometer.y, simulator_state.imu.accelerometer.z]
self.pm.send('accelerometer', dat)
# copied these numbers from locationd
dat = messaging.new_message('gyroscope', valid=True)
dat.gyroscope.sensor = 5
dat.gyroscope.type = 0x10
dat.gyroscope.timestamp = dat.logMonoTime # TODO: use the IMU timestamp
dat.gyroscope.init('gyroUncalibrated')
dat.gyroscope.gyroUncalibrated.v = [simulator_state.imu.gyroscope.x, simulator_state.imu.gyroscope.y, simulator_state.imu.gyroscope.z]
self.pm.send('gyroscope', dat)
def send_gps_message(self, simulator_state: 'SimulatorState'):
if not simulator_state.valid:
return
# transform from vel to NED
velNED = [
-simulator_state.velocity.y,
simulator_state.velocity.x,
simulator_state.velocity.z,
]
for _ in range(10):
dat = messaging.new_message('gpsLocationExternal', valid=True)
dat.gpsLocationExternal = {
"unixTimestampMillis": int(time.time() * 1000),
"flags": 1, # valid fix
"horizontalAccuracy": 1.0,
"verticalAccuracy": 1.0,
"speedAccuracy": 0.1,
"bearingAccuracyDeg": 0.1,
"vNED": velNED,
"bearingDeg": simulator_state.imu.bearing,
"latitude": simulator_state.gps.latitude,
"longitude": simulator_state.gps.longitude,
"altitude": simulator_state.gps.altitude,
"speed": simulator_state.speed,
"source": log.GpsLocationData.SensorSource.ublox,
}
self.pm.send('gpsLocationExternal', dat)
def send_peripheral_state(self):
dat = messaging.new_message('peripheralState')
dat.valid = True
dat.peripheralState = {
'pandaType': log.PandaState.PandaType.blackPanda,
'voltage': 12000,
'current': 5678,
'fanSpeedRpm': 1000
}
self.pm.send('peripheralState', dat)
def send_fake_driver_monitoring(self):
# dmonitoringmodeld output
dat = messaging.new_message('driverStateV2')
dat.driverStateV2.leftDriverData.faceOrientation = [0., 0., 0.]
dat.driverStateV2.leftDriverData.faceProb = 1.0
dat.driverStateV2.rightDriverData.faceOrientation = [0., 0., 0.]
dat.driverStateV2.rightDriverData.faceProb = 1.0
self.pm.send('driverStateV2', dat)
# dmonitoringd output
dat = messaging.new_message('driverMonitoringState', valid=True)
dat.driverMonitoringState = {
"faceDetected": True,
"isDistracted": False,
"awarenessStatus": 1.,
}
self.pm.send('driverMonitoringState', dat)
def send_camera_images(self, world: 'World'):
world.image_lock.acquire()
yuv = self.camerad.rgb_to_yuv(world.road_image)
self.camerad.cam_send_yuv_road(yuv)
if world.dual_camera:
yuv = self.camerad.rgb_to_yuv(world.wide_road_image)
self.camerad.cam_send_yuv_wide_road(yuv)
def update(self, simulator_state: 'SimulatorState', world: 'World'):
now = time.time()
self.send_imu_message(simulator_state)
self.send_gps_message(simulator_state)
if (now - self.last_dmon_update) > DT_DMON/2:
self.send_fake_driver_monitoring()
self.last_dmon_update = now
if (now - self.last_perp_update) > 0.25:
self.send_peripheral_state()
self.last_perp_update = now