70 lines
1.9 KiB
Python
70 lines
1.9 KiB
Python
import numpy as np
|
|
from collections import deque
|
|
|
|
class FirstOrderFilter:
|
|
# first order filter
|
|
def __init__(self, x0, rc, dt, initialized=True):
|
|
self.x = x0
|
|
self.dt = dt
|
|
self.update_alpha(rc)
|
|
self.initialized = initialized
|
|
|
|
def update_alpha(self, rc):
|
|
self.alpha = self.dt / (rc + self.dt)
|
|
|
|
def update(self, x):
|
|
if self.initialized:
|
|
self.x = (1. - self.alpha) * self.x + self.alpha * x
|
|
else:
|
|
self.initialized = True
|
|
self.x = x
|
|
return self.x
|
|
|
|
|
|
class BounceFilter(FirstOrderFilter):
|
|
def __init__(self, x0, rc, dt, initialized=True, bounce=2):
|
|
self.velocity = FirstOrderFilter(0.0, 0.15, dt)
|
|
self.bounce = bounce
|
|
super().__init__(x0, rc, dt, initialized)
|
|
|
|
def update(self, x):
|
|
super().update(x)
|
|
scale = self.dt / (1.0 / 60.0) # tuned at 60 fps
|
|
self.velocity.x += (x - self.x) * self.bounce * scale * self.dt
|
|
self.velocity.update(0.0)
|
|
if abs(self.velocity.x) < 1e-5:
|
|
self.velocity.x = 0.0
|
|
self.x += self.velocity.x
|
|
return self.x
|
|
|
|
class MyMovingAverage:
|
|
def __init__(self, window_size, value=None):
|
|
self.window_size = window_size
|
|
if (value is not None):
|
|
self.values = deque([value] * window_size, maxlen=window_size)
|
|
self.sum = value * window_size
|
|
self.result = value
|
|
else:
|
|
self.values = deque(maxlen=window_size)
|
|
self.sum = 0
|
|
self.result = 0
|
|
|
|
def set(self, value):
|
|
self.values.clear()
|
|
self.values.append(value)
|
|
self.sum = value
|
|
self.result = value
|
|
return value
|
|
|
|
def set_all(self, value):
|
|
self.values = deque([value] * self.window_size, maxlen=self.window_size)
|
|
self.sum = value * self.window_size
|
|
self.result = value
|
|
return value
|
|
|
|
def process(self, value, median=False):
|
|
self.values.append(value)
|
|
self.sum = sum(self.values)
|
|
self.result = float(np.median(self.values)) if median else float(self.sum) / len(self.values)
|
|
return self.result
|