Files
openpilot/selfdrive/modeld/dmonitoringmodeld.py

165 lines
6.7 KiB
Python
Raw Permalink Normal View History

2026-01-11 18:23:29 +08:00
#!/usr/bin/env python3
import os
from openpilot.system.hardware import TICI
os.environ['DEV'] = 'QCOM' if TICI else 'CPU'
from tinygrad.tensor import Tensor
from tinygrad.dtype import dtypes
import time
import pickle
import ctypes
import numpy as np
from pathlib import Path
from setproctitle import setproctitle
from cereal import messaging
from cereal.messaging import PubMaster, SubMaster
from msgq.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
from openpilot.common.swaglog import cloudlog
from openpilot.common.realtime import config_realtime_process
from openpilot.common.transformations.model import dmonitoringmodel_intrinsics
from openpilot.common.transformations.camera import _ar_ox_fisheye, _os_fisheye
from openpilot.selfdrive.modeld.models.commonmodel_pyx import CLContext, MonitoringModelFrame
from openpilot.selfdrive.modeld.parse_model_outputs import sigmoid, safe_exp
from openpilot.selfdrive.modeld.runners.tinygrad_helpers import qcom_tensor_from_opencl_address
PROCESS_NAME = "selfdrive.modeld.dmonitoringmodeld"
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
MODEL_PKL_PATH = Path(__file__).parent / 'models/dmonitoring_model_tinygrad.pkl'
METADATA_PATH = Path(__file__).parent / 'models/dmonitoring_model_metadata.pkl'
class ModelState:
inputs: dict[str, np.ndarray]
output: np.ndarray
def __init__(self, cl_ctx):
with open(METADATA_PATH, 'rb') as f:
model_metadata = pickle.load(f)
self.input_shapes = model_metadata['input_shapes']
self.output_slices = model_metadata['output_slices']
self.frame = MonitoringModelFrame(cl_ctx)
self.numpy_inputs = {
'calib': np.zeros(self.input_shapes['calib'], dtype=np.float32),
}
self.tensor_inputs = {k: Tensor(v, device='NPY').realize() for k,v in self.numpy_inputs.items()}
with open(MODEL_PKL_PATH, "rb") as f:
self.model_run = pickle.load(f)
def run(self, buf: VisionBuf, calib: np.ndarray, transform: np.ndarray) -> tuple[np.ndarray, float]:
self.numpy_inputs['calib'][0,:] = calib
t1 = time.perf_counter()
input_img_cl = self.frame.prepare(buf, transform.flatten())
if TICI:
# The imgs tensors are backed by opencl memory, only need init once
if 'input_img' not in self.tensor_inputs:
self.tensor_inputs['input_img'] = qcom_tensor_from_opencl_address(input_img_cl.mem_address, self.input_shapes['input_img'], dtype=dtypes.uint8)
else:
self.tensor_inputs['input_img'] = Tensor(self.frame.buffer_from_cl(input_img_cl).reshape(self.input_shapes['input_img']), dtype=dtypes.uint8).realize()
output = self.model_run(**self.tensor_inputs).contiguous().realize().uop.base.buffer.numpy()
t2 = time.perf_counter()
return output, t2 - t1
def slice_outputs(model_outputs, output_slices):
return {k: model_outputs[np.newaxis, v] for k,v in output_slices.items()}
def parse_model_output(model_output):
parsed = {}
parsed['wheel_on_right'] = sigmoid(model_output['wheel_on_right'])
for ds_suffix in ['lhd', 'rhd']:
face_descs = model_output[f'face_descs_{ds_suffix}']
parsed[f'face_descs_{ds_suffix}'] = face_descs[:, :-6]
parsed[f'face_descs_{ds_suffix}_std'] = safe_exp(face_descs[:, -6:])
for key in ['face_prob', 'left_eye_prob', 'right_eye_prob','left_blink_prob', 'right_blink_prob', 'sunglasses_prob', 'using_phone_prob']:
parsed[f'{key}_{ds_suffix}'] = sigmoid(model_output[f'{key}_{ds_suffix}'])
return parsed
def fill_driver_data(msg, model_output, ds_suffix):
msg.faceOrientation = model_output[f'face_descs_{ds_suffix}'][0, :3].tolist()
msg.faceOrientationStd = model_output[f'face_descs_{ds_suffix}_std'][0, :3].tolist()
msg.facePosition = model_output[f'face_descs_{ds_suffix}'][0, 3:5].tolist()
msg.facePositionStd = model_output[f'face_descs_{ds_suffix}_std'][0, 3:5].tolist()
msg.faceProb = model_output[f'face_prob_{ds_suffix}'][0, 0].item()
msg.leftEyeProb = model_output[f'left_eye_prob_{ds_suffix}'][0, 0].item()
msg.rightEyeProb = model_output[f'right_eye_prob_{ds_suffix}'][0, 0].item()
msg.leftBlinkProb = model_output[f'left_blink_prob_{ds_suffix}'][0, 0].item()
msg.rightBlinkProb = model_output[f'right_blink_prob_{ds_suffix}'][0, 0].item()
msg.sunglassesProb = model_output[f'sunglasses_prob_{ds_suffix}'][0, 0].item()
msg.phoneProb = model_output[f'using_phone_prob_{ds_suffix}'][0, 0].item()
def get_driverstate_packet(model_output, frame_id: int, location_ts: int, exec_time: float, gpu_exec_time: float):
msg = messaging.new_message('driverStateV2', valid=True)
ds = msg.driverStateV2
ds.frameId = frame_id
ds.modelExecutionTime = exec_time
ds.gpuExecutionTime = gpu_exec_time
ds.rawPredictions = model_output['raw_pred']
ds.wheelOnRightProb = model_output['wheel_on_right'][0, 0].item()
fill_driver_data(ds.leftDriverData, model_output, 'lhd')
fill_driver_data(ds.rightDriverData, model_output, 'rhd')
return msg
def main():
setproctitle(PROCESS_NAME)
config_realtime_process(7, 5)
#sentry.set_tag("daemon", PROCESS_NAME)
cloudlog.bind(daemon=PROCESS_NAME)
cl_context = CLContext()
model = ModelState(cl_context)
cloudlog.warning("models loaded, dmonitoringmodeld starting")
cloudlog.warning("connecting to driver stream")
vipc_client = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_DRIVER, True, cl_context)
while not vipc_client.connect(False):
time.sleep(0.1)
assert vipc_client.is_connected()
cloudlog.warning(f"connected with buffer size: {vipc_client.buffer_len}")
sm = SubMaster(["liveCalibration"])
pm = PubMaster(["driverStateV2"])
calib = np.zeros(model.numpy_inputs['calib'].size, dtype=np.float32)
model_transform = None
while True:
buf = vipc_client.recv()
if buf is None:
continue
if model_transform is None:
cam = _os_fisheye if buf.width == _os_fisheye.width else _ar_ox_fisheye
model_transform = np.linalg.inv(np.dot(dmonitoringmodel_intrinsics, np.linalg.inv(cam.intrinsics))).astype(np.float32)
sm.update(0)
if sm.updated["liveCalibration"]:
calib[:] = np.array(sm["liveCalibration"].rpyCalib)
t1 = time.perf_counter()
model_output, gpu_execution_time = model.run(buf, calib, model_transform)
t2 = time.perf_counter()
raw_pred = model_output.tobytes() if SEND_RAW_PRED else b''
model_output = slice_outputs(model_output, model.output_slices)
model_output = parse_model_output(model_output)
model_output['raw_pred'] = raw_pred
msg = get_driverstate_packet(model_output, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, gpu_execution_time)
pm.send("driverStateV2", msg)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
cloudlog.warning(f"child {PROCESS_NAME} got SIGINT")
except Exception:
sentry.capture_exception()
raise