165 lines
6.7 KiB
Python
Executable File
165 lines
6.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import os
|
|
from openpilot.system.hardware import TICI
|
|
os.environ['DEV'] = 'QCOM' if TICI else 'CPU'
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad.dtype import dtypes
|
|
import time
|
|
import pickle
|
|
import ctypes
|
|
import numpy as np
|
|
from pathlib import Path
|
|
from setproctitle import setproctitle
|
|
|
|
from cereal import messaging
|
|
from cereal.messaging import PubMaster, SubMaster
|
|
from msgq.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
|
|
from openpilot.common.swaglog import cloudlog
|
|
from openpilot.common.realtime import config_realtime_process
|
|
from openpilot.common.transformations.model import dmonitoringmodel_intrinsics
|
|
from openpilot.common.transformations.camera import _ar_ox_fisheye, _os_fisheye
|
|
from openpilot.selfdrive.modeld.models.commonmodel_pyx import CLContext, MonitoringModelFrame
|
|
from openpilot.selfdrive.modeld.parse_model_outputs import sigmoid, safe_exp
|
|
from openpilot.selfdrive.modeld.runners.tinygrad_helpers import qcom_tensor_from_opencl_address
|
|
|
|
PROCESS_NAME = "selfdrive.modeld.dmonitoringmodeld"
|
|
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
|
|
MODEL_PKL_PATH = Path(__file__).parent / 'models/dmonitoring_model_tinygrad.pkl'
|
|
METADATA_PATH = Path(__file__).parent / 'models/dmonitoring_model_metadata.pkl'
|
|
|
|
|
|
class ModelState:
|
|
inputs: dict[str, np.ndarray]
|
|
output: np.ndarray
|
|
|
|
def __init__(self, cl_ctx):
|
|
with open(METADATA_PATH, 'rb') as f:
|
|
model_metadata = pickle.load(f)
|
|
self.input_shapes = model_metadata['input_shapes']
|
|
self.output_slices = model_metadata['output_slices']
|
|
|
|
self.frame = MonitoringModelFrame(cl_ctx)
|
|
self.numpy_inputs = {
|
|
'calib': np.zeros(self.input_shapes['calib'], dtype=np.float32),
|
|
}
|
|
|
|
self.tensor_inputs = {k: Tensor(v, device='NPY').realize() for k,v in self.numpy_inputs.items()}
|
|
with open(MODEL_PKL_PATH, "rb") as f:
|
|
self.model_run = pickle.load(f)
|
|
|
|
def run(self, buf: VisionBuf, calib: np.ndarray, transform: np.ndarray) -> tuple[np.ndarray, float]:
|
|
self.numpy_inputs['calib'][0,:] = calib
|
|
|
|
t1 = time.perf_counter()
|
|
|
|
input_img_cl = self.frame.prepare(buf, transform.flatten())
|
|
if TICI:
|
|
# The imgs tensors are backed by opencl memory, only need init once
|
|
if 'input_img' not in self.tensor_inputs:
|
|
self.tensor_inputs['input_img'] = qcom_tensor_from_opencl_address(input_img_cl.mem_address, self.input_shapes['input_img'], dtype=dtypes.uint8)
|
|
else:
|
|
self.tensor_inputs['input_img'] = Tensor(self.frame.buffer_from_cl(input_img_cl).reshape(self.input_shapes['input_img']), dtype=dtypes.uint8).realize()
|
|
|
|
|
|
output = self.model_run(**self.tensor_inputs).contiguous().realize().uop.base.buffer.numpy()
|
|
|
|
t2 = time.perf_counter()
|
|
return output, t2 - t1
|
|
|
|
def slice_outputs(model_outputs, output_slices):
|
|
return {k: model_outputs[np.newaxis, v] for k,v in output_slices.items()}
|
|
|
|
def parse_model_output(model_output):
|
|
parsed = {}
|
|
parsed['wheel_on_right'] = sigmoid(model_output['wheel_on_right'])
|
|
for ds_suffix in ['lhd', 'rhd']:
|
|
face_descs = model_output[f'face_descs_{ds_suffix}']
|
|
parsed[f'face_descs_{ds_suffix}'] = face_descs[:, :-6]
|
|
parsed[f'face_descs_{ds_suffix}_std'] = safe_exp(face_descs[:, -6:])
|
|
for key in ['face_prob', 'left_eye_prob', 'right_eye_prob','left_blink_prob', 'right_blink_prob', 'sunglasses_prob', 'using_phone_prob']:
|
|
parsed[f'{key}_{ds_suffix}'] = sigmoid(model_output[f'{key}_{ds_suffix}'])
|
|
return parsed
|
|
|
|
def fill_driver_data(msg, model_output, ds_suffix):
|
|
msg.faceOrientation = model_output[f'face_descs_{ds_suffix}'][0, :3].tolist()
|
|
msg.faceOrientationStd = model_output[f'face_descs_{ds_suffix}_std'][0, :3].tolist()
|
|
msg.facePosition = model_output[f'face_descs_{ds_suffix}'][0, 3:5].tolist()
|
|
msg.facePositionStd = model_output[f'face_descs_{ds_suffix}_std'][0, 3:5].tolist()
|
|
msg.faceProb = model_output[f'face_prob_{ds_suffix}'][0, 0].item()
|
|
msg.leftEyeProb = model_output[f'left_eye_prob_{ds_suffix}'][0, 0].item()
|
|
msg.rightEyeProb = model_output[f'right_eye_prob_{ds_suffix}'][0, 0].item()
|
|
msg.leftBlinkProb = model_output[f'left_blink_prob_{ds_suffix}'][0, 0].item()
|
|
msg.rightBlinkProb = model_output[f'right_blink_prob_{ds_suffix}'][0, 0].item()
|
|
msg.sunglassesProb = model_output[f'sunglasses_prob_{ds_suffix}'][0, 0].item()
|
|
msg.phoneProb = model_output[f'using_phone_prob_{ds_suffix}'][0, 0].item()
|
|
|
|
def get_driverstate_packet(model_output, frame_id: int, location_ts: int, exec_time: float, gpu_exec_time: float):
|
|
msg = messaging.new_message('driverStateV2', valid=True)
|
|
ds = msg.driverStateV2
|
|
ds.frameId = frame_id
|
|
ds.modelExecutionTime = exec_time
|
|
ds.gpuExecutionTime = gpu_exec_time
|
|
ds.rawPredictions = model_output['raw_pred']
|
|
ds.wheelOnRightProb = model_output['wheel_on_right'][0, 0].item()
|
|
fill_driver_data(ds.leftDriverData, model_output, 'lhd')
|
|
fill_driver_data(ds.rightDriverData, model_output, 'rhd')
|
|
return msg
|
|
|
|
|
|
def main():
|
|
setproctitle(PROCESS_NAME)
|
|
config_realtime_process(7, 5)
|
|
|
|
#sentry.set_tag("daemon", PROCESS_NAME)
|
|
cloudlog.bind(daemon=PROCESS_NAME)
|
|
|
|
cl_context = CLContext()
|
|
model = ModelState(cl_context)
|
|
cloudlog.warning("models loaded, dmonitoringmodeld starting")
|
|
|
|
cloudlog.warning("connecting to driver stream")
|
|
vipc_client = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_DRIVER, True, cl_context)
|
|
while not vipc_client.connect(False):
|
|
time.sleep(0.1)
|
|
assert vipc_client.is_connected()
|
|
cloudlog.warning(f"connected with buffer size: {vipc_client.buffer_len}")
|
|
|
|
sm = SubMaster(["liveCalibration"])
|
|
pm = PubMaster(["driverStateV2"])
|
|
|
|
calib = np.zeros(model.numpy_inputs['calib'].size, dtype=np.float32)
|
|
model_transform = None
|
|
|
|
while True:
|
|
buf = vipc_client.recv()
|
|
if buf is None:
|
|
continue
|
|
|
|
if model_transform is None:
|
|
cam = _os_fisheye if buf.width == _os_fisheye.width else _ar_ox_fisheye
|
|
model_transform = np.linalg.inv(np.dot(dmonitoringmodel_intrinsics, np.linalg.inv(cam.intrinsics))).astype(np.float32)
|
|
|
|
sm.update(0)
|
|
if sm.updated["liveCalibration"]:
|
|
calib[:] = np.array(sm["liveCalibration"].rpyCalib)
|
|
|
|
t1 = time.perf_counter()
|
|
model_output, gpu_execution_time = model.run(buf, calib, model_transform)
|
|
t2 = time.perf_counter()
|
|
raw_pred = model_output.tobytes() if SEND_RAW_PRED else b''
|
|
model_output = slice_outputs(model_output, model.output_slices)
|
|
model_output = parse_model_output(model_output)
|
|
model_output['raw_pred'] = raw_pred
|
|
msg = get_driverstate_packet(model_output, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, gpu_execution_time)
|
|
pm.send("driverStateV2", msg)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
main()
|
|
except KeyboardInterrupt:
|
|
cloudlog.warning(f"child {PROCESS_NAME} got SIGINT")
|
|
except Exception:
|
|
sentry.capture_exception()
|
|
raise
|