Files
openpilot/selfdrive/controls/radard.py
Comma Device 3721ecbf8a Release 260111
2026-01-11 18:23:29 +08:00

716 lines
25 KiB
Python

#!/usr/bin/env python3
import math
import numpy as np
from collections import deque
from typing import Any
import heapq
import copy
import capnp
from cereal import messaging, log, car
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.params import Params
from openpilot.common.realtime import DT_MDL, Priority, config_realtime_process
from openpilot.common.swaglog import cloudlog
from openpilot.common.simple_kalman import KF1D
# Default lead acceleration decay set to 50% at 1s
_LEAD_ACCEL_TAU = 1.5
# radar tracks
SPEED, ACCEL = 0, 1 # Kalman filter states enum
# stationary qualification parameters
V_EGO_STATIONARY = 4. # no stationary object flag below this speed
RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car
RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame
class Track:
def __init__(self, identifier: int):
self.identifier = identifier
self.cnt = 0
self.aLeadTau = FirstOrderFilter(_LEAD_ACCEL_TAU, 0.45, DT_MDL)
self.is_stopped_car_count = 0
self.selected_count = 0
self.cut_in_count = 0
self.measured = False
self.score = 0.0
self.in_lane_prob = 0.0
self.in_lane_prob_future = 0.0
def update(self, md, pt, ready, radar_reaction_factor, radar_lat_factor):
#pt_yRel = -leads_v3[0].y[0] if track_id in [0, 1] and pt.yRel == 0 and self.ready and leads_v3[0].prob > 0.5 else pt.yRel
self.dRel = pt.dRel
self.yRel = pt.yRel
self.vRel = pt.vRel
self.vLead = self.vLeadK = pt.vLead
self.aLead = self.aLeadK = pt.aLead
self.jLead = pt.jLead
self.yvLead = pt.yvRel
self.measured = pt.measured # measured or estimate
if not self.measured:
self.cnt = 0
self.yRel_future = self.yRel + self.yvLead * radar_lat_factor
self.dRel_future = self.dRel + self.vLead * radar_lat_factor
if ready:
self.d_path(md) #self.yRel + np.interp(self.dRel, md.position.x, md.position.y)
a_lead_threshold = 0.5 * radar_reaction_factor
if abs(self.aLead) < a_lead_threshold and abs(self.jLead) < 0.5:
self.aLeadTau.x = _LEAD_ACCEL_TAU * radar_reaction_factor
else:
self.aLeadTau.update(0.0)
self.cnt += 1
def d_path(self, md):
lane_xs = md.laneLines[1].x
left_ys = md.laneLines[1].y
right_ys = md.laneLines[2].y
def d_path_interp(dRel, yRel):
left_lane_y = np.interp(dRel, lane_xs, left_ys)
right_lane_y = np.interp(dRel, lane_xs, right_ys)
center_y = (left_lane_y + right_lane_y) / 2.0
lane_half_width = abs(right_lane_y - left_lane_y) / 2.0
dist_from_center = yRel + center_y
in_lane_prob = max(0.0, 1.0 - (abs(dist_from_center) / lane_half_width))
return dist_from_center, in_lane_prob
self.dPath, self.in_lane_prob = d_path_interp(self.dRel, self.yRel)
self.dPath_future, self.in_lane_prob_future = d_path_interp(self.dRel_future, self.yRel_future)
def get_RadarState(self, model_prob: float = 0.0, vision_y_rel = 0.0):
return {
"dRel": float(self.dRel),
"yRel": float(self.yRel) if self.yRel != 0.0 else vision_y_rel,
"dPath" : float(self.dPath),
"vRel": float(self.vRel),
"vLead": float(self.vLead),
"vLeadK": float(self.vLeadK),
"aLead": float(self.aLead),
"aLeadK": float(self.aLeadK),
"aLeadTau": float(self.aLeadTau.x),
"jLead": float(self.jLead),
"vLat": float(self.yvLead),
"status": True,
"fcw": self.is_potential_fcw(model_prob),
"modelProb": model_prob,
"radar": True,
"radarTrackId": self.identifier,
"score": self.score # for debug purposes only
}
def potential_low_speed_lead(self, v_ego: float):
# stop for stuff in front of you and low speed, even without model confirmation
# Radar points closer than 0.75, are almost always glitches on toyota radars
return abs(self.yRel) < 1.0 and (v_ego < V_EGO_STATIONARY) and (0.75 < self.dRel < 25)
def is_potential_fcw(self, model_prob: float):
return model_prob > .9
def __str__(self):
ret = f"x: {self.dRel:4.1f} y: {self.yRel:4.1f} v: {self.vRel:4.1f} a: {self.aLeadK:4.1f}"
return ret
def laplacian_pdf(x: float, mu: float, b: float):
diff = abs(x - mu) / max(b, 1e-4)
return 0.0 if diff > 50.0 else math.exp(-diff)
def match_vision_to_track(v_ego: float, lead: capnp._DynamicStructReader, tracks: dict[int, Track]):
offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA
#vel_tolerance = 25.0 if lead.prob > 0.99 else 10.0
max_vision_dist = max(offset_vision_dist * 1.25, 5.0)
min_vision_dist = max(offset_vision_dist * 0.8, 1.0)
max_vision_dist2 = max(offset_vision_dist * 1.45, 5.0)
min_vision_dist2 = 1.5 #max(offset_vision_dist * 0.3, 1.0)
max_offset_vision_vel = max(lead.v[0] * np.interp(lead.prob, [0.8, 0.98], [0.3, 0.5]), 5.0) # 확률이 낮으면 속도오차를 줄임.
def prob(c):
prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0])
prob_y = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0])
prob_y2 = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0] * 2) # for cut-in
prob_v = laplacian_pdf(c.vLead, lead.v[0], lead.vStd[0])
#weight_v = np.interp(c.vLead, [0, 10], [0.3, 1])
score = prob_d * prob_y * prob_v # * weight_v
score2 = prob_d * prob_y2 * prob_v # * weight_v
return score, score2 #prob_d * prob_y * prob_v * weight_v
def vel_sane(c):
return (abs(c.vLead - lead.v[0]) < max_offset_vision_vel) or (c.vLead > 3)
def dist_sane(c, second=False):
if second:
return min_vision_dist2 < c.dRel < max_vision_dist2
return min_vision_dist < c.dRel < max_vision_dist
def y_sane(c, second=False):
if second:
return abs(c.yRel + lead.y[0]) < 4.0
return abs(c.yRel + lead.y[0]) < 2.0
first_track, second_track, extra_track = None, None, None
first_score, second_score, extra_score = -1e6, -1e6, -1e6
for c in tracks.values():
c.score, score2 = prob(c)
if c.score > first_score:
second_score = first_score
second_track = first_track
first_score = c.score
first_track = c
if score2 > extra_score:
extra_score = score2
extra_track = c
#best_track = max(tracks.values(), key=prob)
def select_track(track, score, track2, score2, extra_track, extra_score):
if score < 0.0001:
return None
best_track = None
if dist_sane(track) and vel_sane(track):
if y_sane(track):
if lead.prob > 0.5:
best_track = track
elif lead.prob > 0.4 and track.selected_count > 0: # 비젼이 희미하지만 직전에 선택된 트랙인경우
best_track = track
elif lead.prob > 0.6:
best_track = track
elif dist_sane(track) and y_sane(track, True): # stopped-car
if score2 > 0.00001 and dist_sane(track2) and y_sane(track2) and vel_sane(track2):
best_track = track2
elif track.selected_count > 0:
best_track = track
else:
track.is_stopped_car_count += 2
if track.is_stopped_car_count > int(1.0/DT_MDL):
best_track = track
#elif dist_sane(track) and vel_sane(track) and lead.prob > 0.5:
# best_track = track
elif offset_vision_dist < 90 and lead.prob > 0.65:
# wide y detect, for cut-in
if extra_score > score and dist_sane(extra_track, True) and vel_sane(extra_track) and y_sane(extra_track, True):
best_track = extra_track
# wide dRel, y detect, for cut-in
elif dist_sane(track, True) and vel_sane(track) and y_sane(track, True):
best_track = track
elif score2 > 0.0001 and dist_sane(track2, True) and vel_sane(track2) and y_sane(track2, True):
best_track = track2
return best_track
best_track = select_track(first_track, first_score, second_track, second_score, extra_track, extra_score)
for c in tracks.values():
if c is best_track:
best_track.selected_count += 1
else:
c.selected_count = 0
c.is_stopped_car_count = max(0, c.is_stopped_car_count - 1)
return best_track
def get_RadarState_from_vision(md, lead_msg: capnp._DynamicStructReader, v_ego: float, model_v_ego: float):
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
dRel = float(lead_msg.x[0] - RADAR_TO_CAMERA)
yRel = float(-lead_msg.y[0])
dPath = yRel + np.interp(dRel, md.position.x, md.position.y)
return {
"dRel": float(dRel),
"yRel": yRel,
"dPath" : float(dPath),
"vRel": float(lead_v_rel_pred),
"vLead": float(v_ego + lead_v_rel_pred),
"vLeadK": float(v_ego + lead_v_rel_pred),
"aLead": float(lead_msg.a[0]),
"aLeadK": float(lead_msg.a[0]),
"aLeadTau": 0.3,
"jLead": 0.0,
"vLat" : 0.0,
"fcw": False,
"modelProb": float(lead_msg.prob),
"status": True,
"radar": False,
"radarTrackId": -1,
}
class VisionTrack:
def __init__(self, radar_ts):
self.radar_ts = radar_ts
self.dRel = 0.0
self.vRel = 0.0
self.yRel = 0.0
self.vLead = 0.0
self.aLead = 0.0
self.vLeadK = 0.0
self.aLeadK = 0.0
self.aLeadTau = _LEAD_ACCEL_TAU
self.prob = 0.0
self.status = False
self.dRel_last = 0.0
self.vLead_last = 0.0
self.alpha = 0.02
self.alpha_a = 0.02
self.vLat = 0.0
self.v_ego = 0.0
self.cnt = 0
self.dPath = 0.0
def get_lead(self, md):
#aLeadK = 0.0 if self.mixRadarInfo in [3] else clip(self.aLeadK, self.aLead - 1.0, self.aLead + 1.0)
return {
"dRel": self.dRel,
"yRel": self.yRel,
#"dPath": self.dPath,
"vRel": self.vRel,
"vLead": self.vLead,
"vLeadK": self.vLeadK, ## TODO: 아직 vLeadK는 엉망인듯...
"aLead": self.aLead,
"aLeadK": self.aLeadK,
"aLeadTau": self.aLeadTau,
"jLead": 0.0,
"vLat": 0.0,
"fcw": False,
"modelProb": self.prob,
"status": self.status,
"radar": False,
"radarTrackId": -1,
#"aLead": self.aLead,
#"vLat": self.vLat,
}
def reset(self):
self.status = False
self.aLeadTau = _LEAD_ACCEL_TAU
self.vRel = 0.0
self.vLead = self.vLeadK = self.v_ego
self.aLead = self.aLeadK = 0.0
self.vLat = 0.0
def update(self, lead_msg, model_v_ego, v_ego, md):
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
self.prob = lead_msg.prob
self.v_ego = v_ego
if self.prob > .5:
dRel = float(lead_msg.x[0]) - RADAR_TO_CAMERA
if abs(self.dRel - dRel) > 5.0:
self.cnt = 0
self.dRel = dRel
self.yRel = float(-lead_msg.y[0])
dPath = self.yRel + np.interp(self.dRel, md.position.x, md.position.y)
a_lead_vision = lead_msg.a[0]
if self.cnt < 20 or self.prob < 0.97: # 레이더측정시 cnt는 0, 레이더사라지고 1초간 비젼데이터 그대로 사용
self.vRel = lead_v_rel_pred
self.vLead = float(v_ego + lead_v_rel_pred)
self.aLead = a_lead_vision
self.vLat = 0.0
else:
v_rel = (self.dRel - self.dRel_last) / self.radar_ts
v_rel = self.vRel * (1. - self.alpha) + v_rel * self.alpha
#self.vRel = lead_v_rel_pred if self.mixRadarInfo == 3 else (lead_v_rel_pred + self.vRel) / 2
model_weight = np.interp(self.prob, [0.97, 1.0], [0.4, 0.0]) # prob가 높으면 v_rel(dRel미분값)에 가중치를 줌.
self.vRel = float(lead_v_rel_pred * model_weight + v_rel * (1. - model_weight))
#self.vRel = (lead_v_rel_pred + v_rel) / 2
self.vLead = float(v_ego + self.vRel)
a_lead = (self.vLead - self.vLead_last) / self.radar_ts * 0.2 #0.5 -> 0.2 vel 미분적용을 줄임.
self.aLead = self.aLead * (1. - self.alpha_a) + a_lead * self.alpha_a
if abs(a_lead_vision) > abs(self.aLead): # or self.mixRadarInfo == 3:
self.aLead = a_lead_vision
vLat_alpha = 0.002
self.vLat = self.vLat * (1. - vLat_alpha) + (dPath - self.dPath) / self.radar_ts * vLat_alpha
self.dPath = dPath
self.vLeadK= self.vLead
self.aLeadK = self.aLead
self.status = True
self.cnt += 1
else:
self.reset()
self.cnt = 0
self.dPath = self.yRel + np.interp(v_ego ** 2 / (2 * 2.5), md.position.x, md.position.y)
self.dRel_last = self.dRel
self.vLead_last = self.vLead
# Learn if constant acceleration
#aLeadTauValue = self.aLeadTauPos if self.aLead > self.aLeadTauThreshold else self.aLeadTauNeg
if abs(self.aLead) < 0.3: #self.aLeadTauThreshold:
self.aLeadTau = 0.2 #aLeadTauValue
else:
#self.aLeadTau = min(self.aLeadTau * 0.9, aLeadTauValue)
self.aLeadTau *= 0.9
class RadarD:
def __init__(self, delay: float = 0.0):
self.current_time = 0.0
self.tracks: dict[int, Track] = {}
self.v_ego = 0.0
print("###RadarD.. : delay = ", delay, int(round(delay / DT_MDL))+1)
self.v_ego_hist = deque([0.0], maxlen=int(round(delay / DT_MDL))+1)
self.last_v_ego_frame = -1
self.radar_state: capnp._DynamicStructBuilder | None = None
self.radar_state_valid = False
self.ready = False
self.vision_tracks = [VisionTrack(DT_MDL), VisionTrack(DT_MDL)]
self.params = Params()
self.enable_radar_tracks = self.params.get_int("EnableRadarTracks")
self.enable_corner_radar = self.params.get_int("EnableCornerRadar")
self.radar_lat_factor = 0.0
self.radar_detected = False
def update(self, sm: messaging.SubMaster, rr: car.RadarData):
self.ready = sm.seen['modelV2']
self.current_time = 1e-9*max(sm.logMonoTime.values())
self.enable_radar_tracks = self.params.get_int("EnableRadarTracks")
self.enable_corner_radar = self.params.get_int("EnableCornerRadar")
self.radar_lat_factor = self.params.get_float("RadarLatFactor") * 0.01
self.radar_reaction_factor = self.params.get_float("RadarReactionFactor") * 0.01
self.detect_cut_in = self.radar_lat_factor > 0
leads_v3 = sm['modelV2'].leadsV3
if sm.recv_frame['carState'] != self.last_v_ego_frame:
self.v_ego = sm['carState'].vEgo
self.v_ego_hist.append(self.v_ego)
self.last_v_ego_frame = sm.recv_frame['carState']
valid_ids = set()
for pt in rr.points:
track_id = pt.trackId
valid_ids.add(track_id)
if track_id not in self.tracks:
self.tracks[track_id] = Track(track_id)
self.tracks[track_id].update(sm['modelV2'], pt, self.ready, self.radar_reaction_factor, self.radar_lat_factor)
for tid in list(self.tracks.keys()):
if tid not in valid_ids:
self.tracks.pop(tid)
# *** publish radarState ***
self.radar_state_valid = sm.all_checks()
self.radar_state = log.RadarState.new_message()
model_updated = False if self.radar_state.mdMonoTime == sm.logMonoTime['modelV2'] else True
self.radar_state.mdMonoTime = sm.logMonoTime['modelV2']
self.radar_state.radarErrors = rr.errors
self.radar_state.carStateMonoTime = sm.logMonoTime['carState']
if len(sm['modelV2'].velocity.x):
model_v_ego = sm['modelV2'].velocity.x[0]
else:
model_v_ego = self.v_ego
if len(leads_v3) > 1:
md = sm['modelV2']
if model_updated:
if self.radar_detected:
self.vision_tracks[0].cnt = 0
self.vision_tracks[1].cnt = 0
self.vision_tracks[0].update(leads_v3[0], model_v_ego, self.v_ego, md)
self.vision_tracks[1].update(leads_v3[1], model_v_ego, self.v_ego, md)
alive_tracks = {tid: trk for tid, trk in self.tracks.items() if trk.cnt > 2 }
self.radar_state.leadOne, self.radar_detected = self.get_lead(sm['carState'], md, alive_tracks, 0, leads_v3[0], model_v_ego, low_speed_override=False)
self.radar_state.leadTwo, _ = self.get_lead(sm['carState'], md, alive_tracks, 1, leads_v3[1], model_v_ego, low_speed_override=False)
self.lane_line_available = md.laneLineProbs[1] > 0.5 and md.laneLineProbs[2] > 0.5
self.compute_leads(self.v_ego, alive_tracks, md)
if self.leadTwo is not None:
self.radar_state.leadTwo = self.leadTwo
if self.enable_radar_tracks == 3:
self._pick_lead_one_from_state()
def publish(self, pm: messaging.PubMaster):
assert self.radar_state is not None
radar_msg = messaging.new_message("radarState")
radar_msg.valid = self.radar_state_valid
radar_msg.radarState = self.radar_state
pm.send("radarState", radar_msg)
def get_lead(self, CS, md, tracks: dict[int, Track], index: int, lead_msg: capnp._DynamicStructReader,
model_v_ego: float, low_speed_override: bool = True) -> dict[str, Any]:
v_ego = self.v_ego
ready = self.ready
## backup SCC radar(0, 1 trackid)
if self.enable_radar_tracks <= 0:
track_scc = tracks.get(0)
else:
track_scc = tracks.pop(0, None)
# Determine leads, this is where the essential logic happens
if len(tracks) > 0 and ready and lead_msg.prob > .4:
track = match_vision_to_track(v_ego, lead_msg, tracks)
else:
track = None
if (track is None or lead_msg.prob < .6) and track_scc is not None and track_scc.cnt > 2:
#if self.enable_radar_tracks in [-1, 2] or model_v_ego < 5 or track_scc.vLead < 5.0:
if self.enable_radar_tracks in [-1, 2] or track_scc.vLead < 5.0:
track = track_scc
lead_dict = {'status': False}
radar = False
if track is not None:
lead_dict = track.get_RadarState(lead_msg.prob, self.vision_tracks[0].yRel)
radar = True
elif (track is None) and ready and (lead_msg.prob > .5):
lead_dict = self.vision_tracks[index].get_lead(md)
if self.enable_corner_radar > 0:
lead_dict = self.corner_radar(CS, lead_dict)
if low_speed_override:
low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)]
if len(low_speed_tracks) > 0:
closest_track = min(low_speed_tracks, key=lambda c: c.dRel)
# Only choose new track if it is actually closer than the previous one
if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']):
#lead_dict = closest_track.get_RadarState(lead_msg.prob, self.vision_tracks[0].yRel, self.vision_tracks[0].vLat)
lead_dict = closest_track.get_RadarState(lead_msg.prob, self.vision_tracks[0].yRel)
return lead_dict, radar
def compute_leads(self, v_ego, tracks, md):
lead_msg = md.leadsV3[0] if (md is not None and len(md.position.x) == 33) else None
self.leadCutIn = {'status': False}
if lead_msg is None:
# reset
self.radar_state.leadsLeft = []
self.radar_state.leadsCenter = []
self.radar_state.leadsRight = []
self.radar_state.leadLeft = {'status': False}
self.radar_state.leadRight = {'status': False}
return
left_list, right_list, center_list, cutin_list = [], [], [], []
for c in tracks.values():
y_rel_neg = - c.yRel
# center
if c.in_lane_prob > 0.1:
if c.cnt > 3:
ld = c.get_RadarState(lead_msg.prob, float(-lead_msg.y[0]))
ld['modelProb'] = 0.01
center_list.append(ld)
# left/right
elif y_rel_neg < 0: #left_lane_y:
ld = c.get_RadarState(0, 0)
if self.lane_line_available and c.in_lane_prob_future > 0.1 and c.cnt > int(2.0/DT_MDL):
if c.cut_in_count > int(0.1/DT_MDL):
ld['modelProb'] = 0.03
cutin_list.append(ld)
c.cut_in_count += 2
left_list.append(ld)
else:
ld = c.get_RadarState(0, 0)
if self.lane_line_available and c.in_lane_prob_future > 0.1 and c.cnt > int(2.0/DT_MDL):
if c.cut_in_count > int(0.1/DT_MDL):
ld['modelProb'] = 0.03
cutin_list.append(ld)
c.cut_in_count += 2
right_list.append(ld)
c.cut_in_count = max(c.cut_in_count - 1, 0)
self.radar_state.leadsLeft = left_list
self.radar_state.leadsRight = right_list
self.radar_state.leadsCenter = center_list
self.radar_state.leadsCutIn = cutin_list
self.leadCutIn = min(
(ld for ld in cutin_list if 3 < ld['dRel'] < 50 and ld['vLead'] > 4),
key=lambda d: d['dRel'],
default={'status': False}
)
self.radar_state.leadLeft = min(
(ld for ld in left_list if ld['dRel'] > 5 and abs(ld['dPath']) < 3.5),
key=lambda d: d['dRel'],
default={'status': False}
)
self.radar_state.leadRight = min(
(ld for ld in right_list if ld['dRel'] > 5 and abs(ld['dPath']) < 3.5),
key=lambda d: d['dRel'],
default={'status': False}
)
self.leadTwo = None
if self.lane_line_available:
self.leadCenter = min(
(ld for ld in center_list if ld['vLead'] > 5 and ld['radar'] and ld['dRel'] > 3.5),
key=lambda d: d['dRel'],
default=None
)
if self.radar_state.leadOne.status and self.radar_state.leadOne.radar:
self.leadTwo = min(
(ld for ld in center_list if ld['vLead'] > 5 and ld['radar'] and self.radar_state.leadOne.dRel < ld['dRel'] < 80),
key=lambda d: d['dRel'],
default=None
)
if self.leadTwo is not None:
self.leadTwo = copy.deepcopy(self.leadTwo)
#gap = self.leadTwo['dRel'] - self.radar_state.leadOne.dRel
#offset = 3.0 + min(gap * 0.2, 10)
#self.leadTwo['dRel'] = self.radar_state.leadOne.dRel + offset
self.leadTwo['dRel'] = max(self.radar_state.leadOne.dRel + 3.0, self.leadTwo['dRel'] - 8.0) # lead+1 차를 뒤로 8M후퇴하여, mpc에서 감자하도록함.. 최소 lead보다 3M앞에 위치하도록
else:
self.leadCenter = None
def _ok(ld):
return (ld.get('vLead', 0) > 2 and
abs(ld.get('dPath', 0)) < 4.2 and
ld.get('dRel', 0) > 2)
def _pick_two_with_gap(cands, min_gap=5.0):
xs = sorted((ld for ld in cands if _ok(ld)), key=lambda d: d['dRel'])
if not xs:
return []
first = xs[0]
second = None
for ld in xs[1:]:
# 5m 이상 떨어진 후보만 허용 (>= 5.0)
if (ld['dRel'] - first['dRel']) >= min_gap:
second = ld
break
return [first] if second is None else [first, second]
self.radar_state.leadsLeft2 = _pick_two_with_gap(left_list, min_gap=5.0)
self.radar_state.leadsRight2 = _pick_two_with_gap(right_list, min_gap=5.0)
def _pick_lead_one_from_state(self):
chosen = None
detected = self.radar_detected
if self.leadCutIn and self.leadCutIn.get("status") and self.detect_cut_in:
if self.radar_state.leadOne.status:
if self.leadCutIn["dRel"] < self.radar_state.leadOne.dRel:
chosen = self.leadCutIn
chosen["modelProb"] = 0.03
detected = True
else:
chosen = self.leadCutIn
chosen["modelProb"] = 0.03
detected = True
elif self.leadCenter and self.leadCenter["status"]:
if self.radar_detected:
if self.radar_state.leadOne.status and self.leadCenter["dRel"] < self.radar_state.leadOne.dRel:
chosen = self.leadCenter
chosen["modelProb"] = 0.01
else:
chosen = self.leadCenter
chosen["modelProb"] = 0.02
detected = True
if chosen is not None:
self.radar_state.leadOne = chosen
self.radar_detected = detected
def corner_radar(self, CS, lead_dict):
lat_dist = 1e6
long_dist = 1e6
if 0 < CS.leftLatDist < 2.5:
lat_dist = CS.leftLatDist
long_dist = CS.leftLongDist
if 0 < CS.rightLatDist < 2.5 and CS.rightLongDist < long_dist:
lat_dist = -CS.rightLatDist
long_dist = CS.rightLongDist
if lat_dist == 0.0 or abs(lat_dist) >= 2.5 or long_dist == 1e6:
return lead_dict
if lead_dict['status']:
if lead_dict['dRel'] > long_dist:
lead_dict['dRel'] = long_dist
lead_dict['yRel'] = lat_dist
lead_dict['vRel'] = 0.0
lead_dict['vLead'] = CS.vEgo if CS.vEgo < lead_dict['vLead'] else lead_dict['vLead']
lead_dict['vLeadK'] = lead_dict['vLead']
lead_dict['aLead'] = CS.aEgo if CS.aEgo < lead_dict['aLead'] else lead_dict['aLead']
lead_dict['aLeadK'] = lead_dict['aLead']
lead_dict['aLeadTau'] = _LEAD_ACCEL_TAU
lead_dict['jLead'] = 0.0
lead_dict['vLat'] = 0.0
lead_dict['modelProb'] = 1.0
lead_dict['radarTrackId'] = -1
lead_dict['radar'] = True
else:
lead_dict['status'] = True
lead_dict['dRel'] = long_dist
lead_dict['yRel'] = lat_dist
lead_dict['vRel'] = 0.0
lead_dict['vLead'] = CS.vEgo
lead_dict['vLeadK'] = CS.vEgo
lead_dict['aLead'] = CS.aEgo
lead_dict['aLeadK'] = CS.aEgo
lead_dict['aLeadTau'] = _LEAD_ACCEL_TAU
lead_dict['jLead'] = 0.0
lead_dict['vLat'] = 0.0
lead_dict['modelProb'] = 1.0
lead_dict['radarTrackId'] = -1
lead_dict['radar'] = True
return lead_dict
# fuses camera and radar data for best lead detection
def main() -> None:
config_realtime_process(5, Priority.CTRL_LOW)
# wait for stats about the car to come in from controls
cloudlog.info("radard is waiting for CarParams")
CP = messaging.log_from_bytes(Params().get("CarParams", block=True), car.CarParams)
cloudlog.info("radard got CarParams")
# *** setup messaging
sm = messaging.SubMaster(['modelV2', 'carState', 'liveTracks'], poll='modelV2')
#sm = messaging.SubMaster(['modelV2', 'carState', 'liveTracks'], poll='liveTracks')
pm = messaging.PubMaster(['radarState'])
RD = RadarD(CP.radarDelay)
while 1:
sm.update()
RD.update(sm, sm['liveTracks'])
RD.publish(pm)
if __name__ == "__main__":
main()